This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387328 #6 Sep 02 2025 21:57:31 %S A387328 1,1,1,2,3,4,5,7,10,13,17,22,28,36,46,58,73,91,114,141,174,214,262, %T A387328 320,389,472,571,688,828,993,1189,1419,1690,2009,2383,2821,3334,3931, %U A387328 4628,5439,6381,7474,8741,10207,11902,13858,16114,18710,21698,25130,29070 %N A387328 Number of integer partitions of n whose parts have choosable sets of integer partitions. %C A387328 First differs from A052335 at A052335(20) = 173, a(20) = 174, corresponding to the partition (4,4,4,4,4). %C A387328 a(n) is the number of integer partitions of n such that it is possible to choose a sequence of distinct integer partitions, one of each part. %C A387328 Also the number of integer partitions y of n with no part k whose multiplicity in y exceeds A000041(k). %e A387328 The a(1) = 1 through a(9) = 13 partitions: %e A387328 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A387328 (21) (22) (32) (33) (43) (44) (54) %e A387328 (31) (41) (42) (52) (53) (63) %e A387328 (221) (51) (61) (62) (72) %e A387328 (321) (322) (71) (81) %e A387328 (331) (332) (333) %e A387328 (421) (422) (432) %e A387328 (431) (441) %e A387328 (521) (522) %e A387328 (3221) (531) %e A387328 (621) %e A387328 (3321) %e A387328 (4221) %t A387328 Table[Length[Select[IntegerPartitions[n],Select[Tuples[IntegerPartitions/@#],UnsameQ@@#&]!={}&]],{n,0,15}] %Y A387328 The strict case is A000009. %Y A387328 For initial intervals instead of partitions we have A238873, complement A387118. %Y A387328 For divisors instead of partitions we have A239312, complement A370320. %Y A387328 For prime factors instead of partitions we have A370592, ranks A368100. %Y A387328 The complement for prime factors is A370593, ranks A355529. %Y A387328 The complement is counted by A387134, ranks A387577. %Y A387328 For sets of strict partitions we have A387178, complement A387137. %Y A387328 These partitions are ranked by A387576. %Y A387328 A000005 counts divisors. %Y A387328 A000041 counts integer partitions. %Y A387328 Cf. A052335, A052337, A335433, A367771, A370585, A370804. %K A387328 nonn,new %O A387328 0,4 %A A387328 _Gus Wiseman_, Sep 01 2025