This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387330 #12 Sep 09 2025 08:12:20 %S A387330 1,1,1,2,3,4,5,7,10,12,16,21,27,34,43,54,67,83,103,126,155,188,229, %T A387330 277,335,403,483,578,691,821,975,1155,1367,1610,1896,2228,2613,3057, %U A387330 3573,4167,4853,5640,6550,7590,8786,10154,11722,13510,15556,17885,20540 %N A387330 Number of integer partitions of n such that it is possible to choose a different constant integer partition of each part. %C A387330 Also the number of integer partitions of n such that for each part k the multiplicity of k is at most A000005(k). %e A387330 The partition (4,2,2,1) has choices such as ((2,2),(1,1),(2),(1)) so is counted under a(9). %e A387330 The a(1) = 1 through a(9) = 12 partitions: %e A387330 (1) (2) (3) (4) (5) (6) (7) (8) (9) %e A387330 (21) (22) (32) (33) (43) (44) (54) %e A387330 (31) (41) (42) (52) (53) (63) %e A387330 (221) (51) (61) (62) (72) %e A387330 (321) (322) (71) (81) %e A387330 (331) (332) (432) %e A387330 (421) (422) (441) %e A387330 (431) (522) %e A387330 (521) (531) %e A387330 (3221) (621) %e A387330 (3321) %e A387330 (4221) %t A387330 consptns[n_]:=Select[IntegerPartitions[n],SameQ@@#&]; %t A387330 Table[Length[Select[IntegerPartitions[n],Select[Tuples[consptns/@#],UnsameQ@@#&]!={}&]],{n,0,15}] %Y A387330 For initial intervals instead of constant partitions we have A238873, complement A387118. %Y A387330 For divisors instead of constant partitions we have A239312, complement A370320. %Y A387330 The complement for all partitions is A387134, ranks A387577. %Y A387330 The complement for strict partitions is A387137. %Y A387330 For strict instead of constant partitions we have A387178. %Y A387330 These partitions are ranked by A387181. %Y A387330 For all partitions (not just constant) we have A387328, ranks A387576. %Y A387330 The complement is counted by A387329, ranks A387180. %Y A387330 A000005 counts constant integer partitions. %Y A387330 A000009 counts strict integer partitions. %Y A387330 A000041 counts integer partitions. %Y A387330 A063834 counts twice-partitions. %Y A387330 Cf. A052335, A276079, A355731, A355739, A367771, A383706, A387110. %K A387330 nonn,new %O A387330 0,4 %A A387330 _Gus Wiseman_, Sep 07 2025