This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387349 #8 Sep 02 2025 09:24:24 %S A387349 1,4,6,7,9,11,12,14,17,19,20,22,25,27,30,32,33,35,38,40,41,43,46,48, %T A387349 51,53,54,56,59,61,62,64,66,67,69,72,74,75,77,80,82,85,87,88,90,93,95, %U A387349 96,98,100,101,103,106,108,109,111,114,116,117,119,121,122 %N A387349 Positions of 0's in A387348. %C A387349 This sequence together with A387350 and A387351 partition the positive integers. Conjecture: the difference sequence (3, 2, 1, 2, 2, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 1, ... ) has exactly 3 distinct terms. %t A387349 z = 300; %t A387349 A[n_, k_] := Module[{t, a, b}, t = (1 + Sqrt[5])/2; %t A387349 a = Floor[n*(t + 1) + 1 + t/2]; b = Round[a*t]; ({b, a} . MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]]; %t A387349 ts = Table[A[n, k], {n, 0, z - 1}, {k, 0, z - 1}]; (* A035506, Stolarsky array *) %t A387349 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A387349 tw = Table[W[n, k], {n, 1, z}, {k, 1, z}]; (* A035513, Wythoff array *) %t A387349 diff = tw - ts; %t A387349 u = Table[diff[[n]][[2]], {n, 1, z}] %t A387349 Flatten[Position[u, 0]] (* A387349 *) %t A387349 Flatten[Position[u, 1]] (* A387350 *) %t A387349 Flatten[Position[u, -1]] (* A387351 *) %Y A387349 Cf. A387348, A387350, A387351. %K A387349 nonn,new %O A387349 1,2 %A A387349 _Clark Kimberling_, Aug 27 2025