This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387351 #5 Sep 01 2025 22:09:27 %S A387351 3,8,16,21,24,29,37,42,45,50,55,58,63,71,76,79,84,92,97,105,110,113, %T A387351 118,126,131,134,139,144,147,152,160,165,168,173,181,186,194,199,202, %U A387351 207,215,220,223,228,236,241,249,254,257,262,270,275,278,283,288,291 %N A387351 Positions of -1's in A387348. %C A387351 This sequence together with A387349 and A387350 partition the positive integers. %C A387351 Conjecture: the difference sequence, (5, 8, 5, 3, 5, 8, 5, 3, 5, 5, 3, 5, 8, 5, 3, 5, 8, 5, 8, ... ) has exactly 3 distinct terms. %t A387351 z = 300; %t A387351 A[n_, k_] := Module[{t, a, b}, t = (1 + Sqrt[5])/2; %t A387351 a = Floor[n*(t + 1) + 1 + t/2]; b = Round[a*t]; ({b, a} . MatrixPower[{{1, 1}, {1, 0}}, k])[[2]]]; %t A387351 ts = Table[A[n, k], {n, 0, z - 1}, {k, 0, z - 1}]; (* A035506, Stolarsky array *) %t A387351 W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; %t A387351 tw = Table[W[n, k], {n, 1, z}, {k, 1, z}]; (* A035513, Wythoff array *) %t A387351 diff = tw - ts; %t A387351 u = Table[diff[[n]][[2]], {n, 1, z}] %t A387351 Flatten[Position[u, 0]] (* A387349 *) %t A387351 Flatten[Position[u, 1]] (* A387350 *) %t A387351 Flatten[Position[u, -1]] (* A387351 *) %Y A387351 Cf. A387348, A387349, A387350. %K A387351 nonn,new %O A387351 1,1 %A A387351 _Clark Kimberling_, Aug 27 2025