cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387393 Decimal expansion of the imaginary part of the smallest complex solution to zeta(z) = zeta(1-z).

This page as a plain text file.
%I A387393 #17 Sep 03 2025 22:20:35
%S A387393 3,4,3,6,2,1,8,2,2,6,0,8,6,9,6,1,5,9,1,6,5,5,9,6,5,4,2,5,6,5,6,4,7,2,
%T A387393 8,8,8,0,8,8,5,7,8,0,8,2,9,7,5,2,0,5,3,2,6,5,3,4,1,3,9,4,3,8,8,8,0,3,
%U A387393 4,2,8,6,2,3,1,8,7,3,4,0,8,6,8,7,4,6,3,1,1,7,6,6,0,3,9,4,3,7,2,8,8,4,3,6,6,5,1,7,2,2,6,1,3,5,4,0,2,0,7,0
%N A387393 Decimal expansion of the imaginary part of the smallest complex solution to zeta(z) = zeta(1-z).
%C A387393 Using the reflection formula for the zeta function, one can also rewrite the equality in terms of the Gamma function as Gamma(z) = (2^(z-1))*(Pi^z)*sec((Pi*z)/2).
%C A387393 There are infinitely many solutions on the real axis and on the critical line.
%C A387393 The solutions on the critical line are the gram points and this is the first positive gram point.
%C A387393 There are 12 complex solutions apart from these out of which 3 are unique:
%C A387393    8.990914533614919... + i*4.510594140699146...
%C A387393   13.162787864991035... + i*2.580464971850669...
%C A387393   16.478090665944547... + i*0.679406009477847...
%H A387393 Wikipedia, <a href="https://en.wikipedia.org/wiki/Riemann%E2%80%93Siegel_theta_function#Gram_points">Gram points</a>
%F A387393 zeta(0.5+i*3.436218226086961...) = zeta(0.5-i*3.436218226086961...) = 0.564150979455795...
%F A387393 Smallest complex root > 0.5 of the equation Gamma(z) = (2^(z-1))*(Pi^z)*sec((Pi*z)/2).
%F A387393 Smallest positive zero of sin(theta(t)) where theta is Riemann-Siegel theta function.
%F A387393 Smallest positive root of (-0.5i)*(loggamma(.25+(i*z)*.5)-loggamma(.25-(i*z)*.5)) - (z*log(Pi))*.5 = -Pi.
%e A387393 0.5 + i*3.43621822608696159...
%t A387393 RealDigits[Im[x /. FindRoot[Zeta[x] == Zeta[1 - x], {x, 0.5+3.5I}, WorkingPrecision -> 20]]][[1]]
%Y A387393 Cf. A058303, A377302.
%K A387393 nonn,cons,new
%O A387393 1,1
%A A387393 _Jwalin Bhatt_, Aug 28 2025