This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387430 #20 Aug 29 2025 15:05:04 %S A387430 1,2,26,576,18886,822800,44758244,2920443904,222277449286, %T A387430 19333107926208,1891679562586252,205658657276205056, %U A387430 24594577004735218716,3208651043895419972096,453493188773477070618248,69025100503218462336614400,11256667883184684951198851654,1958143582960886584057480612864 %N A387430 a(n) = Sum_{k=0..n} (n-i)^k * (n+i)^(n-k) * binomial(n,k)^2, where i is the imaginary unit. %C A387430 Sum_{k=0..n} (n-i)^k * (n+i)^(n-k) * binomial(n,k) = 2^n * n^n. - _Vaclav Kotesovec_, Aug 29 2025 %F A387430 a(n) = Sum_{k=0..floor(n/2)} n^(n-2*k) * binomial(2*(n-k),n-k) * binomial(n-k,k). %F A387430 a(n) = Sum_{k=0..floor(n/2)} (n^2+1)^k * (2*n)^(n-2*k) * binomial(n,2*k) * binomial(2*k,k). %F A387430 a(n) = [x^n] (1 + 2*n*x + (n^2+1)*x^2)^n. %F A387430 a(n) ~ 2^(2*n) * n^(n - 1/2) / sqrt(Pi). - _Vaclav Kotesovec_, Aug 29 2025 %t A387430 Join[{1}, Table[Sum[(n^2 + 1)^k * (2*n)^(n-2*k) * Binomial[n,2*k] * Binomial[2*k,k], {k,0,n/2}], {n,1,20}]] (* or *) %t A387430 Table[(I + n)^n Hypergeometric2F1[-n, -n, 1, (-I + n)/(I + n)], {n, 0, 20}] (* _Vaclav Kotesovec_, Aug 29 2025 *) %o A387430 (PARI) a(n) = sum(k=0, n\2, (n^2+1)^k*(2*n)^(n-2*k)*binomial(n, 2*k)*binomial(2*k, k)); %Y A387430 Main diagonal of A386621. %Y A387430 Cf. A110129, A387459. %K A387430 nonn,new %O A387430 0,2 %A A387430 _Seiichi Manyama_, Aug 29 2025