This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387435 #15 Sep 03 2025 09:14:27 %S A387435 3,7,45,13293,461504710485,37306936154345310416554765472710125 %N A387435 Number of dominating sets in the n-Dorogovtsev-Goltsev-Mendes graph. %C A387435 a(6) has 104 decimal digits. - _Andrew Howroyd_, Aug 31 2025 %H A387435 Andrew Howroyd, <a href="/A387435/b387435.txt">Table of n, a(n) for n = 0..8</a> %H A387435 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>. %H A387435 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Dorogovtsev-Goltsev-MendesGraph.html">Dorogovtsev-Goltsev-Mendes Graph</a>. %t A387435 Join[{3}, Map[{1, 2, 1} . # &, NestList[Function[{p2, q1, q2}, {p2 (p2^2 + q1^2), q1^2 (q2 + p2), q2 (q1^2 + q2^2)}] @@ # &, {1, 2, 2}, 7]]] (* _Eric W. Weisstein_, Sep 03 2025 *) %o A387435 (PARI) %o A387435 step(v)={my([p2,q1,q2]=v); [p2*(p2^2+q1^2), q1^2*(q2+p2), q2*(q1^2+q2^2)]} %o A387435 a(n)={if(n==0, 3, my(v=[1,2,2]); for(i=2, n, v=step(v)); v[1]+2*v[2]+v[3])} \\ _Andrew Howroyd_, Aug 31 2025 %Y A387435 Cf. A115098 (domination number), A368456. %K A387435 nonn,new %O A387435 0,1 %A A387435 _Eric W. Weisstein_, Aug 29 2025 %E A387435 a(4) onwards from _Andrew Howroyd_, Aug 29 2025