A387463 Total number of 3's in the decimal digits of the divisors of n.
0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 3, 1, 1, 2, 1, 1, 3, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 2, 0, 1, 2, 1, 1, 3, 0, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 2, 1, 1, 3, 0, 0, 2, 0, 0, 3
Offset: 1
Examples
a(33) = 3 because among the divisors of 33, 3 has one 3 and 33 has two, for a total of 3.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f:= proc(n) local t; add(subs(x=1, t)^3, t = expand((1+x+x^2)^n)) end proc: map(f, [$1..100]);
-
Mathematica
a[n_]:=Count[Flatten[IntegerDigits/@Divisors[n]],3];Array[a,99] (* James C. McMahon, Aug 30 2025 *)
-
Python
from sympy import divisors def a(n): return sum(str(d).count("3") for d in divisors(n, generator=True)) print([a(n) for n in range(1, 100)]) # Michael S. Branicky, Aug 29 2025