A387465 Irregular triangle T(n,k), n >= 0, 0 <= k < 2^(n-1), where T(n,k) = Product_{j=0..n-1} prime(n-j)^((j+1)*d_j), where d_j is the bit with digit weight 2^j in the binary expansion of 2^(n-1)+k.
1, 2, 4, 12, 8, 40, 72, 360, 16, 112, 400, 2800, 432, 3024, 10800, 75600, 32, 352, 1568, 17248, 4000, 44000, 196000, 2156000, 2592, 28512, 127008, 1397088, 324000, 3564000, 15876000, 174636000, 64, 832, 7744, 100672, 21952, 285376, 2656192, 34530496, 40000, 520000
Offset: 0
Examples
Table begins: n\k 0 1 2 3 4 5 6 7 ------------------------------------------------ 0: 1; 1: 2; 2: 4, 12; 3: 8, 40, 72, 360; 4: 16, 112, 400, 2800, 432, 3024, 10800, 75600; ... Table showing prime power decomposition of a(n), where A067255(a(n)) represents prime(i)^j | a(n), with j in the i-th position, replacing 0 with "." for visibility: n a(n) A067255(a(n)) -------------------------- 0 1 . 1 2 1 2 4 2 3 12 21 4 8 3 5 40 3.1 6 72 32 7 360 321 8 16 4 9 112 4..1 10 400 4.2 11 2800 4.21 12 432 43 13 3024 43.1 14 10800 432 15 75600 4321
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..16384
- Michael De Vlieger, Log log scatterplot of a(n) n = 0..2^14.
- Michael De Vlieger, Plot prime(i)^j at (x,y) = (n,i), n = 0..2047, 16X vertical exaggeration, with a color function representing j = 1 in black, j = 2 in red, j = 3 in orange, ..., j = 15 in magenta.
Crossrefs
Programs
-
Mathematica
f[x_] := If[x == 1, {0}, Function[g,ReplacePart[Table[0, {PrimePi[f[[-1, 1]] ]}], #] &@ Map[PrimePi@ First@ # -> Last@ # &, g] ]@ FactorInteger@ x]; Table[f[Reverse@ Range[Length[#]]*#] &@ Reverse@ IntegerDigits[n, 2], {n, 0, 120}]
Formula
Let row_index(n) = A029837(n+1) = ceiling(log_2(n+1)), giving the row of the triangle that contains term a(n) of the linear sequence.
Let lin_index(n,k) = floor(2^(n-1))+k, giving the index in the linear sequence corresponding to term T(n,k) of the triangle.
a(0) = 1; otherwise:
a(2n) = A064549(a(n)) = a(n) * rad(a(n));
a(2n+1) = a(2n) * prime(row_index(n)).
T(n,0) = 2^n.
T(n,k) = T(n,0) * A242378(n - row_index(k), a(k)), where A242378(i,j) "adds i to the indices of the prime factors of j".
T(n,ceiling(2^(n-1))-1) = A006939(n).
For n > 1, T(n,1) = A265127(n) = 2^n * prime(n).
For n > 2, T(n,2^(n-1)) = A167747(n) = phi(6^n) = 2^n * 3^(n-1).
For n > 2, T(n,2^(n-2)) = A093141(n-1) = 4 * 10^(n-1). = 2^n * 5^(n-2).
Comments