This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387466 #19 Aug 30 2025 10:12:56 %S A387466 1,1,2,1,2,6,1,2,8,20,1,2,14,32,70,1,2,24,68,136,252,1,2,38,128,406, %T A387466 592,924,1,2,56,212,1096,2332,2624,3432,1,2,78,320,2566,7632,13964, %U A387466 11776,12870,1,2,104,452,5320,20092,60864,83848,53344,48620 %N A387466 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of 1/sqrt(1 - 4*x - (2*k*x)^2). %F A387466 A(n,k) = Sum_{j=0..n} (1-k*i)^j * (1+k*i)^(n-j) * binomial(n,j)^2, where i is the imaginary unit. %F A387466 A(n,k) = Sum_{j=0..floor(n/2)} k^(2*j) * binomial(2*(n-j),n-j) * binomial(n-j,j). %F A387466 n*A(n,k) = 2*(2*n-1)*A(n-1,k) + 4*k^2*(n-1)*A(n-2,k) for n > 1. %F A387466 A(n,k) = Sum_{j=0..floor(n/2)} (k^2+1)^j * 2^(n-2*j) * binomial(n,2*j) * binomial(2*j,j). %F A387466 A(n,k) = [x^n] (1 + 2*x + (k^2+1)*x^2)^n. %F A387466 E.g.f. of column k: exp(2*x) * BesselI(0, 2*sqrt(k^2+1)*x). %e A387466 Square array begins: %e A387466 1, 1, 1, 1, 1, 1, 1, ... %e A387466 2, 2, 2, 2, 2, 2, 2, ... %e A387466 6, 8, 14, 24, 38, 56, 78, ... %e A387466 20, 32, 68, 128, 212, 320, 452, ... %e A387466 70, 136, 406, 1096, 2566, 5320, 10006, ... %e A387466 252, 592, 2332, 7632, 20092, 44752, 88092, ... %e A387466 924, 2624, 13964, 60864, 210524, 607424, 1523724, ... %o A387466 (PARI) a(n, k) = sum(j=0, n\2, (k^2+1)^j*2^(n-2*j)*binomial(n, 2*j)*binomial(2*j, j)); %Y A387466 Columns k=0..4 give A000984, A006139, A084770, A098455, A098456. %Y A387466 Main diagonal gives A387467. %Y A387466 Cf. A386621. %K A387466 nonn,tabl,new %O A387466 0,3 %A A387466 _Seiichi Manyama_, Aug 29 2025