This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A387479 #13 Sep 01 2025 03:07:47 %S A387479 1,0,0,2,6,0,4,48,36,8,216,648,232,768,5184,6944,3696,28800,86464, %T A387479 71712,137376,691328,1185216,1067904,4280512,12749952,15523200, %U A387479 26248832,102010752,201056256,243856384,694548480,1995570432,3031771136,5109762048,16129681920 %N A387479 a(n) = Sum_{k=0..floor(n/3)} 2^k * 3^(n-3*k) * binomial(k,n-3*k)^2. %H A387479 Vincenzo Librandi, <a href="/A387479/b387479.txt">Table of n, a(n) for n = 0..2000</a> %F A387479 G.f.: 1/sqrt((1-2*x^3-6*x^4)^2 - 48*x^7). %t A387479 Table[Sum[2^k* 3^(n-3*k)*Binomial[k,n-3*k]^2,{k,0,Floor[n/3]}],{n,0,40}] (* _Vincenzo Librandi_, Sep 01 2025 *) %o A387479 (PARI) a(n) = sum(k=0, n\3, 2^k*3^(n-3*k)*binomial(k, n-3*k)^2); %o A387479 (Magma) [(&+[2^k *3^(n-3*k)* Binomial(k,n-3*k)^2: k in [0..Floor(n/3)]]): n in [0..40]]; // _Vincenzo Librandi_, Sep 01 2025 %Y A387479 Cf. A108490, A387478. %K A387479 nonn,new %O A387479 0,4 %A A387479 _Seiichi Manyama_, Aug 30 2025