cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387489 Number of packing 1X1X2 bricks into 2X2Xn boxes considering packings obtained by rigid motions equivalent.

This page as a plain text file.
%I A387489 #15 Sep 02 2025 14:10:56
%S A387489 1,1,2,7,26,71,258,857,3148,11300,41841,154140,573201,2129726,7935779,
%T A387489 29569762,110281431,411333271,1534676318,5726191937,21367848168,
%U A387489 79738762725,297573920356,1110521036955,4144432037026,15467004104026,57723125759179,215424338586742,803971544759711,3000455162798396,11197833423648453,41790839930063492,155965434740272813,582070675232252525
%N A387489 Number of packing 1X1X2 bricks into 2X2Xn boxes considering packings obtained by rigid motions equivalent.
%C A387489 There seem to be several typos in Jepsen's equations. The enumeration here is derived from the expression of p(n) as 1/8ths of Psi(e)+2*Psi(rho)+Psi(rho^2)+2*Psi(sigma)+2*Psi(rho*sigma) if n>=3.
%H A387489 Vincenzo Librandi, <a href="/A387489/b387489.txt">Table of n, a(n) for n = 0..1000</a>
%H A387489 Charles H. Jepsen, <a href="https://doi.org/10.2307/2690755">Packing a box with bricks</a>, Math. Mag. 64 (2) (1991) 92-97, Table 1.
%H A387489 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (6,-4,-26,33,8,-8,24,-31,-14,12,2,-1).
%F A387489 G.f.: 1 +x +2*x^2 -x^3*(-7 +16*x +57*x^2 -118*x^3 -38*x^4 +30*x^5 -53*x^6 +127*x^7 +42*x^8 -49*x^9 -7*x^10 +4*x^11) / ( (x-1)*(1+x) *(x^2+2*x-1) *(x^2+1) *(x^2-4*x+1) *(x^4-4*x^2+1) ).
%t A387489 CoefficientList[Series[1+x+2*x^2-x^3*(-7+16*x+57*x^2-118*x^3-38*x^4+30*x^5-53*x^6+127*x^7+42*x^8-49*x^9-7*x^10+4*x^11)/((x-1)*(1+x)*(x^2+2*x-1)*(x^2+1)*(x^2-4*x+1)*(x^4-4*x^2+1)),{x,0,33}],x] (* _Vincenzo Librandi_, Sep 02 2025 *)
%o A387489 (Magma) m:=35; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1 +x +2*x^2 -x^3*(-7 +16*x +57*x^2 -118*x^3 -38*x^4 +30*x^5 -53*x^6 +127*x^7 +42*x^8 -49*x^9 -7*x^10 +4*x^11) / ( (x-1)*(1+x) *(x^2+2*x-1) *(x^2+1) *(x^2-4*x+1) *(x^4-4*x^2+1)) )); // _Vincenzo Librandi_, Sep 02 2025
%Y A387489 Cf. A109437 (is Jepsen's b(n)/4), A006253 (rigid motion symmetry ignored, Jepsen's a(n)).
%K A387489 nonn,easy,new
%O A387489 0,3
%A A387489 _R. J. Mathar_, Aug 31 2025