cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387542 a(n) is the distance from the n-th term of A386482 to the nearest term of A386482 coprime to it.

This page as a plain text file.
%I A387542 #7 Sep 02 2025 14:10:33
%S A387542 0,1,2,3,2,2,4,2,2,4,2,2,2,2,3,2,3,2,5,2,3,2,3,2,3,2,3,2,2,4,2,2,2,2,
%T A387542 3,5,4,3,5,3,2,2,2,2,2,2,2,3,2,2,2,2,3,2,2,4,2,2,2,2,3,5,5,6,5,4,3,2,
%U A387542 3,2,2,2,2,2,2,2,2,2,2,3,5,5,6,8,8,9,11
%N A387542 a(n) is the distance from the n-th term of A386482 to the nearest term of A386482 coprime to it.
%C A387542 In other words: a(n) is the least d >= 0 such that gcd(A386482(n), A386482(n - d)) = 1 or gcd(A386482(n), A386482(n + d)) = 1.
%C A387542 The sequence is well defined as A386482(1) = 1 is coprime to all terms of A386482.
%H A387542 Rémy Sigrist, <a href="/A387542/b387542.txt">Table of n, a(n) for n = 1..10000</a>
%H A387542 Rémy Sigrist, <a href="/A387542/a387542.gp.txt">PARI program</a>
%e A387542 For n = 7: the GCD of A386482(7) = 12 and its neighboring terms are:
%e A387542   d   A387542(7+d)  gcd(A387542(7), A387542(7+d))
%e A387542   --  ------------  -----------------------------
%e A387542   -4             4                              4
%e A387542   -3             6                              6
%e A387542   -2             3                              3
%e A387542   -1             9                              3
%e A387542    0            12                             12
%e A387542    1            10                              2
%e A387542    2             8                              4
%e A387542    3            14                              2
%e A387542    4             7                              1
%e A387542 The nearest coprime term, A387542(11) = 7, is at distance 4, so a(7) = 4.
%o A387542 (PARI) \\ See Links section.
%Y A387542 Cf. A386482.
%K A387542 nonn,new
%O A387542 1,3
%A A387542 _Rémy Sigrist_, Sep 01 2025