cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387613 Numbers k such that A386482(k) and A386482(k+2) are coprime.

This page as a plain text file.
%I A387613 #8 Sep 04 2025 14:55:31
%S A387613 1,3,6,9,11,12,14,18,22,24,26,29,31,32,41,42,44,45,47,49,50,52,55,57,
%T A387613 58,68,70,71,73,74,76,77,98,101,102,104,109,113,115,119,122,123,124,
%U A387613 126,137,138,142,144,174,179,187,189,192,193,196,203,205,207,234
%N A387613 Numbers k such that A386482(k) and A386482(k+2) are coprime.
%C A387613 For k > 1, A386482(k) and A386482(k+1) share a prime factor, however A386482(k) and A386482(k+2) may not share a prime factor. The present sequence lists those indexes.
%H A387613 Rémy Sigrist, <a href="/A387613/b387613.txt">Table of n, a(n) for n = 1..10000</a>
%H A387613 Rémy Sigrist, <a href="/A387613/a387613.gp.txt">PARI program</a>
%e A387613 The first terms, alongside the first terms of A386482, are:
%e A387613   k   A386482(k)  A386482(k+2)  n   a(n)
%e A387613   --  ----------  ------------  --  ----
%e A387613    1           1             4   1     1
%e A387613    2           2             6
%e A387613    3           4             3   2     3
%e A387613    4           6             9
%e A387613    5           3            12
%e A387613    6           9            10   3     6
%e A387613    7          12             8
%e A387613    8          10            14
%e A387613    9           8             7   4     9
%e A387613   10          14            21
%e A387613   11           7            18   5    11
%e A387613   12          21            16   6    12
%e A387613   13          18            20
%e A387613   14          16            15   7    14
%e A387613   15          20             5
%o A387613 (PARI) \\ See Links section.
%Y A387613 Cf. A386482, A387087.
%K A387613 nonn,new
%O A387613 1,2
%A A387613 _Rémy Sigrist_, Sep 03 2025