cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387713 Nonprimitive terms of A387711: numbers k for which A387715(k) > 1.

This page as a plain text file.
%I A387713 #9 Sep 06 2025 13:55:56
%S A387713 8,12,16,20,24,28,32,36,40,44,48,52,54,56,60,64,68,72,76,80,81,84,88,
%T A387713 90,92,96,100,104,108,112,116,120,124,126,128,132,135,136,140,144,148,
%U A387713 150,152,156,160,162,164,168,172,176,180,184,188,189,192,196,198,200,204,208,210,212,216,220,224,225,228,232,234
%N A387713 Nonprimitive terms of A387711: numbers k for which A387715(k) > 1.
%H A387713 Antti Karttunen, <a href="/A387713/b387713.txt">Table of n, a(n) for n = 1..10000</a>
%F A387713 {k | A387715(k) > 1}.
%o A387713 (PARI)
%o A387713 A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
%o A387713 A387715(n) = sumdiv(n,d,(A003959(d)>(2*d)));
%o A387713 is_A387713(n) = (A387715(n)>1);
%Y A387713 Cf. A003959.
%Y A387713 Setwise difference A387711 \ A387712. Positions of terms > 1 in A387715.
%Y A387713 Subsequence of A341610.
%K A387713 nonn,new
%O A387713 1,1
%A A387713 _Antti Karttunen_, Sep 06 2025