cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A387722 Numbers k for which A107758(k) > 2*k, but for all whose proper divisors d|k, d A107758(d) <= 2*d.

This page as a plain text file.
%I A387722 #8 Sep 06 2025 21:40:26
%S A387722 6,10,14,15,21,22,26,34,38,46,58,62,74,82,86,94,106,118,122,134,142,
%T A387722 146,158,166,178,194,202,206,214,218,226,254,262,274,278,298,302,314,
%U A387722 326,334,346,358,362,382,385,386,394,398,422,429,446,454,455,458,466,478,482,502,514,526,538,542,554,561,562,566
%N A387722 Numbers k for which A107758(k) > 2*k, but for all whose proper divisors d|k, d<k, A107758(d) <= 2*d.
%C A387722 Not the same as the positions of 1's in A387725.
%H A387722 Antti Karttunen, <a href="/A387722/b387722.txt">Table of n, a(n) for n = 1..10000</a>
%o A387722 (PARI)
%o A387722 A107758(n) =  { my(f = factor(n)); prod(k=1, #f~, 1+sigma(f[k, 1]^f[k, 2])); };
%o A387722 is_A387722(n) = if((A107758(n)<=(2*n)), 0, fordiv(n, d, if(d<n && A107758(d)>(2*d), return(0))); (1));
%Y A387722 Cf. A107758, A387725.
%Y A387722 Setwise difference A387721 \ A387723.
%Y A387722 Cf. also A091191, A337372, A387712.
%K A387722 nonn,new
%O A387722 1,1
%A A387722 _Antti Karttunen_, Sep 06 2025