cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-52 of 52 results.

A223726 Multiplicities for A004433: sum of four distinct nonzero squares.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 3, 2, 1, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 3, 1, 1, 2, 3, 1, 2, 1, 1, 2, 4, 2, 1, 2, 3, 1, 5, 2, 2, 2, 2, 3, 4, 3, 1, 4, 1, 1, 4, 2, 2, 2, 5, 3, 1, 6, 3, 3, 1, 2, 1, 1, 4, 4, 1, 2, 5, 1, 3, 7, 3, 2, 3, 4
Offset: 1

Views

Author

Wolfdieter Lang, Mar 26 2013

Keywords

Comments

The number A004433(n) can be partitioned into four distinct parts, each of which is a nonzero square, and a(n) gives the multiplicity which is the number of different partitions of this type.

Examples

			a(1) = 1 because  A004433(1) = 30 has only one representation as sum of four distinct nonzero squares, given by the quadruple [1,2,3,4]: 1^2 + 2^2 + 3^2 + 4^2 = 30.
a(16) = 3 because for A004433(3) = 78 the three different quadruples are [1, 2, 3, 8], [1, 4, 5, 6] and [2, 3, 4, 7].
a(48) = 5 because A004433(48) = 126 has five different  representations given by the five quadruples [1, 3, 4, 10], [1, 5, 6, 8], [2, 3, 7, 8], [2, 4, 5, 9], [4, 5, 6, 7].
		

Crossrefs

Formula

a(n) = k if there are k different quadruples [s(1),s(2),2(3),s(4)] with increasing positive entries with sum(s(j)^2,j=1..4) = A004433(n), n >= 1.

A224778 One half of the even numbers that are the sum of four nonzero squares.

Original entry on oeis.org

2, 5, 6, 8, 9, 10, 11, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
Offset: 1

Views

Author

Wolfdieter Lang, May 09 2013

Keywords

Comments

These are the even numbers of A000414 divided by 2.

Crossrefs

Cf. A000414.

Formula

a(n) is one half of the n-th even number of the sequence A000414.
Previous Showing 51-52 of 52 results.