A271227 Number of solutions to y^2 == x^3 + 17 (mod p) as p runs through the primes.
2, 3, 5, 12, 11, 20, 17, 26, 23, 29, 42, 48, 41, 56, 47, 53, 59, 48, 62, 71, 63, 75, 83, 89, 102, 101, 110, 107, 111, 113, 146, 131, 137, 132, 149, 170, 182, 171, 167, 173
Offset: 1
Examples
Here P(n) stands for prime(n). n, P(n), a(n)\ Solutions (x, y) modulo P(n) 1, 2, 2: (0, 1), (1, 0) 2, 3: 3: (1, 0), (2, 1), (2, 2) 3, 5, 5: (2, 0), (3, 2), (3, 3), (4, 1), (4, 4) 4, 7, 12: (1, 2), (1, 5), (2, 2), (2, 5), (3, 3), (3, 4), (4, 2), (4, 5), (5, 3), (5,4), (6, 3), (6, 4) 5, 11, 11: (2, 5), (2, 6), (3, 0), (4, 2), (4, 9), (8, 1), (8, 10), (9, 3), (9, 8), (10, 4), (10, 7) ... ---------------------------------------------------------- The conjecture is for example true for n=4: prime(4) = 7 == 1 (mod 3) = A002476(1). A(1) = 2 , B(1) = 1, q(1)^2 = 1 = (A(1) - B(1))^2 (case 2). a(4) = 7 + sqrt(4*7 - 3*1^2 ) = 7 + 5 = 12 (+sqrt is used here, because d(4) = A271228(4) = -5 (negative)).
References
- J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Table 45.5, Theorem 45.2, p. 400, Exercise 45.3, p. 404, p. 408 (4th ed., Pearson 2014, Table 5, Theorem 2, p. 366, Exercise 3, p. 370, p. 376)
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Formula
a(n) gives the number of solutions of the congruence y^2 == x^3 + 17 (mod prime(n)), n >= 1.
Proved [Silverman]: a(n) = prime(n) if prime(n) = 0 or 2 (mod 3).
Conjecture [WL]:
If prime(n) = 1 (mod 3), i.e., prime(n) = A002476(m), then a(n) = prime(n) + or -sqrt(4*prime(n) - 3*q(m)^2), with q(m)^2 of the form (2*B(m))^2 or (A(m) - B(m))^2 or (A(m) + B(m))^2 (exclusive or), with A(m) = A001479(m+1) and B(m) = A001480(m+1). See a comment above for the three cases applying to the first 40 primes 1 (mod 3). The +sqrt or -sqrt applies for negative or positive d(n) = A271228(n), respectively.
a(n) = prime(n) - A271228(n).
Comments