cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A132886 Triangle read by rows: T(n,k) is the number of paths in the right half-plane, from (0,0) to (n,0), consisting of steps U=(1,1), D=(1,-1), h=(1,0) and H=(2,0), having k U steps (0 <= k <= floor(n/2)).

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 5, 18, 6, 8, 44, 30, 13, 102, 120, 20, 21, 222, 390, 140, 34, 466, 1140, 700, 70, 55, 948, 3066, 2800, 630, 89, 1884, 7770, 9800, 3780, 252, 144, 3672, 18780, 31080, 17850, 2772, 233, 7044, 43710, 91560, 72450, 19404, 924, 377, 13332, 98610
Offset: 0

Views

Author

Emeric Deutsch, Sep 03 2007

Keywords

Comments

Row n has 1+floor(n/2) terms. T(n,0) = A000045(n+1) (the Fibonacci numbers). T(2n,n) = binomial(2n,n) = A000984(n) (the central binomial coefficients). Row sums yield A059345. Column k has g.f. = binomial(2k,k)*z^(2k)/(1-z-z^2)^(2k+1); accordingly, T(n,1) = 2*A001628(n-2), T(n,2) = 6*A001873(n-4), T(n,3) = 20*A001875(n-6). See A132883 for the same statistic on paths restricted to the first quadrant.

Examples

			Triangle starts:
   1;
   1;
   2,   2;
   3,   6;
   5,  18,   6;
   8,  44,  30;
  13, 102, 120,  20;
T(3,1)=6 because we have hUD, UhD, UDh, hDU, DhU and DUh.
		

Crossrefs

Programs

  • Maple
    G:=1/sqrt((1-z-z^2)^2-4*t*z^2): Gser:=simplify(series(G,z=0,17)): for n from 0 to 13 do P[n]:= sort(coeff(Gser,z,n)) end do: for n from 0 to 13 do seq(coeff(P[n],t,j),j=0..floor((1/2)*n)) end do; # yields sequence in triangular form

Formula

G.f.: G(t,z) = 1/sqrt((1-z-z^2)^2 - 4tz^2).

A181974 Triangle T(n,k), read by rows, given by (1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -3, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 4, 2, 1, 5, 7, 5, 4, 1, 8, 11, 10, 9, 3, 1, 13, 18, 20, 20, 9, 5, 1, 21, 29, 38, 40, 22, 15, 4, 1, 34, 47, 71, 78, 51, 40, 14, 6, 1, 55, 76, 130, 147, 111, 95, 40, 22, 5, 1, 89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 06 2012

Keywords

Examples

			Triangle begins :
1
1, 1
2, 3, 1
3, 4, 2, 1
5, 7, 5, 4, 1
8, 11, 10, 9, 3, 1
13, 18, 20, 20, 9, 5, 1
21, 29, 38, 40, 22, 15, 4, 1
34, 47, 71, 78, 51, 40, 14, 6, 1
55, 76, 130, 147, 111, 95, 40, 22, 5, 1
89, 123, 235, 272, 233, 213, 105, 68, 20, 7, 1
144, 199, 420, 495, 474, 455, 256, 185, 65, 30, 6, 1
		

Crossrefs

Formula

G.f.: (1+y*x+2*y*x^2)/(1-x-x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3 and T(n,k) = 0 if k<0 or if k>n.
T(n + 2k, 2k) = A037027(n + k, k).
T(n + 2k +1, 2k + 1) = A182001(n + k, k).
T(n,0) = Fibonacci(n+1).
Previous Showing 11-12 of 12 results.