A374366 a(n) = Im(Sum_{k=1..n} [k|n]*A008683(k)*(i^k)).
1, 1, 2, 1, 0, 2, 2, 1, 2, 0, 2, 2, 0, 2, 0, 1, 0, 2, 2, 0, 4, 2, 2, 2, 0, 0, 2, 2, 0, 0, 2, 1, 4, 0, 0, 2, 0, 2, 0, 0, 0, 4, 2, 2, 0, 2, 2, 2, 2, 0, 0, 0, 0, 2, 0, 2, 4, 0, 2, 0, 0, 2, 4, 1, 0, 4, 2, 0, 4, 0, 2, 2, 0, 0, 0, 2, 4, 0, 2, 0, 2, 0, 2, 4, 0, 2
Offset: 1
Programs
-
Mathematica
nn = 86; ParallelTable[Im[Sum[If[Mod[n, k] == 0, 1, 0]*(I^k)*MoebiusMu[k], {k, 1, n}]], {n, 1, nn}]
-
Python
from sympy import mobius, divisors def A374366(n): return sum(-mobius(d) if d&2 else mobius(d) for d in divisors(n>>(~n & n-1).bit_length(),generator=True)) # Chai Wah Wu, Jul 06 2024
-
Python
from sympy import primefactors def A374366(n): # based on multiplicative property of a(n) a = 0 for p in primefactors(n>>(~n & n-1).bit_length()): if p&2: a += 1 else: return 0 return 1<Chai Wah Wu, Jul 07 2024
Formula
a(n) = Im(Sum_{k=1..n} [k|n]*A008683(k)*(i^k)).
Comments