cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A081637 Class 9+ primes.

Original entry on oeis.org

532801, 710341, 720617, 1212487, 1261157, 1372081, 1457293, 1490429, 1532173, 1657801, 1788547, 1789093, 1809601, 1829293, 1887877, 1944181, 1960141, 1997587, 2121853, 2161853, 2474413, 2484049, 2557441, 2578801, 2613607
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[196000], ClassPlusNbr[ Prime[ # ]] == 9 &]]

A129469 Least prime of Erdos-Selfridge class n+ in A129470.

Original entry on oeis.org

883, 3181, 15913, 2146141, 17227801, 456185017, 4960846573, 568124640697, 2273325467773, 145351829612377, 9302101084613641, 595332797734595317, 5813792718345189961, 1139502378775815768313, 166245781044286357673761
Offset: 3

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

The sequence starts at offset 3, since primes of class 1+ and 2+ have all prime factors (of p+1) of class 1+. Definitions imply that a(n) >= -1+2*A005113(n-1)*nextprime(1+A005113(n-1)). We have a(n) = -1+2*A005113(n-1)*p for all n<18, with p prime for n>3. This holds probably for all n.

Examples

			a(3) = 883 = -1+2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 2+.
a(4) = 3181 = -1+2*37*43 is a prime of class 4+ since 37 is of class 3+, but the largest divisor of 3181+1 is 43 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1]; if(n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129469={vector(#A005113-1,i,t=A005113[i+1]; t=[t,nextprime(t+1)-1,0];until( isprime( t[3] = -1+2*t[1]*t[2] ) & (f=factor( 1+t[3] )[,1]) & class(f[ #f],1)= i+1, print("Warning, crossed a prime of class >= ",i+1,"+, p=", t[2]); ); ); print(i+2," ",t[3]); t[3])}

A084071 Class 12+ primes.

Original entry on oeis.org

68198461, 115084901, 138358573, 156811273, 213397621, 220576331, 234432217, 260050573, 282261961, 290996753, 330864497, 353653063, 371500819, 383616341, 406915273, 426240379, 445800983, 446707201, 449558323, 460339577, 472782553
Offset: 1

Views

Author

Robert G. Wilson v, Mar 20 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[25000000], ClassPlusNbr[ Prime[ # ]] == 12 &]]

A090468 Class 13+ primes.

Original entry on oeis.org

545587687, 852480757, 1048438561, 1150849009, 1323457987, 1745980517, 1756123441, 1785398401, 1798736161, 1892507347, 1937020021, 2002155601, 2136716521, 2150905573, 2229004913, 2548101601, 2671514917, 2838761021
Offset: 1

Views

Author

Robert G. Wilson v, Nov 26 2003

Keywords

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Maple
    For Maple program see Mathar link in A005105.
  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] + 1]]; ClassPlusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[195000000], ClassPlusNbr[ Prime[ # ]] == 13 &]]

A129470 Primes p such that the largest prime factor of p+1 has Erdős-Selfridge class+ < N-1 if p is of class N+.

Original entry on oeis.org

883, 1747, 2417, 2621, 3181, 3301, 3533, 3571, 3691, 3853, 4027, 4133, 4513, 4783, 4861, 4957, 5303, 5381, 5393, 5563, 5641, 5821, 6067, 6577, 6991, 7177, 7253, 7331, 8059, 8093, 8377, 8731, 8839, 8929, 8969, 9221, 9281, 9397, 9613, 9931
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

In practice the class+ of a prime p is most often given by 1 + the class of the largest prime factor of p+1; terms of this sequence are counterexamples to this "rule". Terms of this sequence are at least of class 3+, since primes of class 1+ and 2+ have all prime factors of p+1 of class 1+. Terms a(k) of this sequence are >= -1 + 2*A005113(N-1) * nextprime(A005113(N-1)), where N is the class of a(k).

Examples

			a(3) = 883 = -1 + 2*13*17 is a prime of class 3+ since 13 is of class 2+, but the largest divisor of 883+1 is 17 which is only of class 1+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129470(n=100,p=1,a=[])={ local(f); while( #a 3, f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f,2,-1, f[i]=class( f[i] ); if( f[i] > f[ #f], a=concat(a,p); /*print(#a," ",p);*/ break))); a}

A129474 Primes of Erdos-Selfridge class 14+.

Original entry on oeis.org

1704961513, 7281416041, 7638227617, 9462536833, 11934730597, 13237911481, 13282423003, 13522629793, 13942983841, 14185279861, 16029089501, 16221987853, 17434233041, 18171787987, 19639505461, 20717555041
Offset: 1

Views

Author

M. F. Hasler, Apr 16 2007

Keywords

Comments

Primes of class r (or r+) are by definition the primes p for which p + 1 has all factors of a lower class < r, but at least one factor of class r - 1. See A005113 for more information.
a(1..149) calculated using A090468 up to 37.5e9, which gives A129474(150) > 75e9.

Examples

			a(1) = A005113[14] = 1704961513 = -1+2*852480757, where 852480757 = A090468[2]
		

Crossrefs

Programs

  • PARI
    class(n, s=1) = { if(!isprime(n),0, if(!(n=factor(n+s)[,1]) || n[ #n]<=3,1, for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1]))};
    nextclass(a,s=1,p,n=[])={if(!p,p=nextprime(a[ #a]+1)); print("producing primes of class ",1+class(a[1],s),["+","-"][1+(s<0)]," up to 2*",p); for(i=1,#a,for(k=1,p/a[i],if(isprime(2*k*a[i]-s),n=concat(n,2*k*a[i]-s))));vecsort(n)};
    A129474=nextclass(A090468,1)

Formula

{ a(n) } = { p = 2*m*A090468(k)-1 | k=1,2,3... and m=1,2,3... such that p is prime and m has no factor of class > 13+ }

A129473 Primes p of Erdos-Selfridge class 5+ with largest prime factor of p+1 not of class 4+.

Original entry on oeis.org

15913, 18541, 22921, 36353, 47741, 49201, 52267, 55333, 60589, 64969, 66137, 66721, 69203, 72707, 73291, 74167, 75773, 78401, 79861, 80737, 82051, 84533, 90227, 90373, 95191, 95483, 95629, 97673, 99133, 101323, 103951, 104681, 104827
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 15913 = -1+2*73*109 is a prime of class 5+ since 73 is of class 4+, but the largest divisor of 15913+1 is 109 which is only of class 2+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; A129473(n=100,p=1,a=[])={ local(f); while( #a 3 & 4 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 5 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 5, a=concat(a,p); /*print(#a," ",p)*/)); a}

A129477 Primes p of Erdos-Selfridge class 6+ with largest prime factor of p+1 not of class 5+.

Original entry on oeis.org

2146141, 2182897, 2954773, 3199813, 3224317, 3285577, 3383593, 3505933, 3555121, 3567373, 3653137, 3775417, 3864037, 4250977, 4298533, 4328053, 4493773, 4504651, 4519981, 4572037, 4647277, 4692637, 4719061, 4726537
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 2146141 = -1+2*1021*1051 = A129469[6] is a prime of class 6+ since 2146141+1 has prime factor 1021=A081633[1]=A005113[5] of class 5+, but the largest prime factor of 2146141+1 is 1051=A005107[65] of class 3+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129477(n=100,p=1,a=[])={local(f,a5=A005113[5]);p=max(p,a5*nextprime(a5+1)*2-1); while( #a2 & f[ #f-1] >= a5 & 5 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 6 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 6, a=concat(a,p); print(#a," ",p))); a}

A129478 Primes p of Erdos-Selfridge class 7+ with largest prime factor of p+1 not of class 6+.

Original entry on oeis.org

17227801, 18207913, 18592957, 19433053, 19608073, 19678081, 20028121, 20518177, 20658193, 20833213, 21043237, 21218257, 21533293, 21743317, 22128361, 22303381, 23668537, 25068697, 25418737, 25453741
Offset: 1

Views

Author

M. F. Hasler, Apr 17 2007

Keywords

Comments

Examples

			a(1) = 17227801 = -1+2*2917*2953 = A129469[7] is a prime of class 7+ since 17227801+1 has prime factor 2917 = A081634[1] = A005113[6] of class 6+, but the largest prime factor of 17227801+1 is 2953 = A005107[175] of class 3+.
		

Crossrefs

Programs

  • PARI
    class(n,s=1)={n=factor(n+s)[,1];if(n[ #n]<=3,1,for(i=2,#n,n[1]=max(class(n[i],s)+1,n[1]));n[1])}; a129478(n=100,p=1,a=[])={local(f,a6=A005113[6]);p=max(p,a6*nextprime(a6+1)*2-2); while( #a2 & f[ #f-1] >= a6 & 6 > class(f[ #f]), f=factor(1+p=nextprime(p+1))[,1]); forstep( i=#f-1,2,-1, if( 7 < f[1] = max( f[1],1+class( f[i] )), next(2))); if( f[1] == 7, a=concat(a,p); print(#a," ",p))); a}

A081640 a(n) = n-th prime of class 12- according to the Erdős-Selfridge classification.

Original entry on oeis.org

14920303, 18224639, 24867247, 26532953, 34548443, 38003011, 39800743, 41319599, 41443483, 45604771, 46432667, 47247763, 49734341, 49734493, 49749439, 51591833, 53014667, 55257977, 59681383, 59700749, 60804817
Offset: 1

Views

Author

Robert G. Wilson v, Mar 23 2003

Keywords

Comments

The first 184 resp. 300 terms of A081430 allow us to deduce 44 resp. 84 consecutive terms of this sequence. - M. F. Hasler, Apr 05 2007

Examples

			a(1) = 14920303 = 1+2*A081430(3)*3 is the smallest 12- prime
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, A18.

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_Integer] := Flatten[ Table[ #[[1]], {1}] & /@ FactorInteger[n]]; f[n_Integer] := Block[{m = n}, If[m == 0, m = 1, While[ IntegerQ[m/2], m /= 2]; While[ IntegerQ[m/3], m /= 3]]; Apply[Times, PrimeFactors[m] - 1]]; ClassMinusNbr[n_] := Length[ NestWhileList[f, n, UnsameQ, All]] - 3; Prime[ Select[ Range[3610000], ClassMinusNbr[ Prime[ # ]] == 12 &]]
  • PARI
    nextclassminus( a, p=1, n=[] )={ while( p, n=concat(n,p); p=0; for( i=1,#a, if( p & 2*a[i] >= p-1, break); for( k=ceil(n[ #n]/2/a[i]),a[ #a]/a[i], if( p & 2*k*a[i] >= p-1, break); if( isprime(2*k*a[i]+1), p=2*k*a[i]+1; break(1+(k==1)); ))));vecextract(n,"^1")}; A081640 = nextclassminus(A081430) \\ M. F. Hasler, Apr 05 2007

Formula

{ a(n) } = { p = 2*m*A081430(k)+1 | k=1,2,...,oo and m=1,2,... such that p is prime and m has no factor of class > 11- } - M. F. Hasler, Apr 05 2007

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 21 2007
Previous Showing 11-20 of 22 results. Next