cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A347737 Zero together with the partial sums of A238005.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 2, 3, 5, 5, 7, 9, 11, 13, 15, 16, 20, 23, 25, 28, 31, 33, 37, 41, 45, 48, 52, 54, 59, 64, 67, 72, 78, 81, 86, 89, 94, 100, 106, 110, 116, 122, 126, 132, 138, 141, 148, 155, 162, 168, 174, 179, 186, 193, 198, 204, 212, 218, 226, 234, 240, 248, 256, 260
Offset: 0

Views

Author

Omar E. Pol, Sep 11 2021

Keywords

Comments

a(n) is also the total number of ones in the first n rows of A347579, n >= 1.

Crossrefs

a(n) is also the total number of zeros in the first n rows of the triangles A196020, A211343, A231345, A236106, A237048 (simpler), A239662, A261699, A271344, A272026, A280850, A285574, A285891, A285914, A286013, A296508 (and possibly others), n >= 1.

Programs

  • Mathematica
    Accumulate@Table[Length@Select[Select[IntegerPartitions@n,DuplicateFreeQ],Differences@MinMax@#=={Length@#}&],{n,60}] (* Giorgos Kalogeropoulos, Sep 12 2021 *)
  • Python
    from math import isqrt
    def A347737(n): return (r:=isqrt((n+1<<3)+1)-1>>1)*(6*n+4-r*(r+3))//6-((t:=isqrt(m:=n>>1))+(s:=isqrt(n)))*(t-s)-(sum(n//k for k in range(1,s+1))-sum(m//k for k in range(1,t+1))<<1) # Chai Wah Wu, Jun 07 2025

Formula

a(n) = A006463(n+1) - A060831(n).

A365763 a(n) = number of polynomials of degree 4 in a regular Groebner basis (graded reverse lexicographic order) of n quadratic polynomials in n variables.

Original entry on oeis.org

0, 0, 1, 3, 5, 10, 14, 22, 29, 39, 50, 60, 76, 91, 105, 126, 146, 165, 189, 215, 240, 264, 297, 329, 360, 390, 430, 469, 507, 544, 588, 635, 681, 726, 770, 826, 881, 935
Offset: 1

Views

Author

Gilles Macario-Rat, Sep 18 2023

Keywords

Examples

			For n=3, the leading monomial is x3^4, so a(3) = 1.
For n=4, the 3 leading monomials are x1x4^3, x2x4^3, x3x4^3, so a(4) = 3.
		

Crossrefs

Cf. A000027 (degree 2), A006463 (degree 3).

Programs

  • Magma
    function a(n);
    F:=GF(251);
    P<[x]>:=PolynomialRing(F,n,"grevlex");
    M2:=[ &*[P| x[i] : i in s] : s in Multisets({1..n},2) ];
    A:=[ &+[Random(F)*m : m in M2] : i in [1..n]];
    G:=GroebnerBasis(A,4);
    return #[ g : g in G | TotalDegree(g) eq 4 ];
    end function;
Previous Showing 11-12 of 12 results.