cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 115 results. Next

A248239 Egyptian fraction representation of sqrt(10) (A010467) using a greedy function.

Original entry on oeis.org

3, 7, 52, 5271, 32510519, 1551821465402536, 2553352811042166137014681056617, 6785214292790116540717856342564735260380655042140053309985580, 57499324177051573068556985649019772314982410954417460069917198506894068347777607349711324456505504280305966462257432295349
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 10]]

A248242 Egyptian fraction representation of sqrt(13) (A010470) using a greedy function.

Original entry on oeis.org

3, 2, 10, 181, 37860, 2063394882, 20133724366323386460, 895769948382354175062611801976979893814, 1095684829796116398764171865109547325653507924058299202087102696023776712107256
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
    0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 13]]

A248245 Egyptian fraction representation of sqrt(17) (A010473) using a greedy function.

Original entry on oeis.org

4, 9, 84, 11142, 474347339, 1448582974451426406, 2526762018809024624337804813995389534, 28249016389028465904997590221278194109894254535234000317524709009386354668
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter >
    0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 17]]

A248249 Egyptian fraction representation of sqrt(21) (A010477) using a greedy function.

Original entry on oeis.org

4, 2, 13, 177, 344766, 1649432522483, 3009384963228815398356405, 9085726642856091334926418336934724393317743509110, 200625769243543756748406312378876010708020812606355642597458369416042779347013395136132184521789202
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 21]]

A248253 Egyptian fraction representation of sqrt(26) (A010481) using a greedy function.

Original entry on oeis.org

5, 11, 124, 21784, 767400293, 1762025132544871871, 3756028786746097256770667892973677974, 42736560346010944990137576929510502074095427615068285034007804816583306199
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 26]]

A248254 Egyptian fraction representation of sqrt(27) (A010482) using a greedy function.

Original entry on oeis.org

5, 6, 34, 13516, 202119099, 64783216365098195, 22100984125756663557825370106132649, 666714143657173655990633057343413567220367208291412102910376204532308
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 27]]

A248259 Egyptian fraction representation of sqrt(32) (A010487) using a greedy function.

Original entry on oeis.org

5, 2, 7, 72, 9241, 229909903, 85086814482844985, 23179346469573782778010843389086345, 543347867420258195663107222041076121949552033670222863973158866609327, 741522735509298769232902024568403103695824837660291384400704443062457446366917782889948614422252425565925024142554380383285632350884136295
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 32]]

A248263 Egyptian fraction representation of sqrt(37) (A010491) using a greedy function.

Original entry on oeis.org

6, 13, 172, 39216, 11016972197, 134283233503741443791, 18872603108304707287590736836379382332539, 773806129529571836706640292961775806691343199188996534429569375589794450652266246
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 37]]

A248267 Egyptian fraction representation of sqrt(41) (A010495) using a greedy function.

Original entry on oeis.org

6, 3, 15, 321, 111450, 533909816159, 325998701518914099105001, 1006914879088411198399682064005635831534437484321, 1497711655729721286088828059704410216184274677681054392262396421340070136379357931802690267613686
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 41]]

A248271 Egyptian fraction representation of sqrt(45) (A010499) using a greedy function.

Original entry on oeis.org

6, 2, 5, 122, 138674, 32476589259, 7827697016386517458238, 674742854143668103289252692160450020023615629, 480580099090725670530151893237450499682750267119621001128141465878491826900413350973083878
Offset: 0

Views

Author

Robert G. Wilson v, Oct 04 2014

Keywords

Crossrefs

Egyptian fraction representations of the square roots: A006487, A224231, A248235-A248322.
Egyptian fraction representations of the cube roots: A129702, A132480-A132574.

Programs

  • Mathematica
    Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 45]]
Previous Showing 11-20 of 115 results. Next