A248258
Egyptian fraction representation of sqrt(31) (A010486) using a greedy function.
Original entry on oeis.org
5, 2, 15, 911, 756131657, 1046059081493109619, 1823555845900657755132295578770597587, 5295210870312939233563525303202129576974975306672437715711158044936692625
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[
iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 31]]
A248260
Egyptian fraction representation of sqrt(33) (A010488) using a greedy function.
Original entry on oeis.org
5, 2, 5, 23, 923, 1039448, 1349594009502, 1841990944227649463764190, 5531888379621714420992617902281239594988386275117, 172423874327527416450254906621893256497583527925050132860644029730203113536215473159687066655835408
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 33]]
A248261
Egyptian fraction representation of sqrt(34) (A010489) using a greedy function.
Original entry on oeis.org
5, 2, 4, 13, 249, 78409, 36737419013, 3360517821921008389676, 12410117686109445240372967020019944131780632, 3346975977981026206584708326983128003661219924365061759193139960235987881485856695085453
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 34]]
A248262
Egyptian fraction representation of sqrt(35) (A010490) using a greedy function.
Original entry on oeis.org
5, 2, 3, 13, 172, 106165, 18285649425, 2186743227575352844102, 34485253453894276212351220254887863775700566, 1196120890861075329034546890130985440938005448458845105688952404014155813652248242764257
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 35]]
A248264
Egyptian fraction representation of sqrt(38) (A010492) using a greedy function.
Original entry on oeis.org
6, 7, 47, 3569, 13543237, 813461964457561, 7421316108781190769825230152615, 711253293828537228004750977021512448161146012227144474046636992, 2200029703970808428058199608953702518884689809814432014002394662129432102727790523039076189301028040002865113400234535183784056
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 38]]
A248265
Egyptian fraction representation of sqrt(39) (A010493) using a greedy function.
Original entry on oeis.org
6, 5, 23, 659, 437284, 377751319913, 340271588652415528090388, 1890912187940287800367373789659912522501201614249, 7449562319978893326251035904298267810521574218546460385778180298134511070414909881921779582771096
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 39]]
A248266
Egyptian fraction representation of sqrt(40) (A010494) using a greedy function.
Original entry on oeis.org
6, 4, 14, 320, 571786, 469930223859, 260342286471149560589985, 110737149164265654381526929767261159120340941327, 13640751783742037895965317463353502238298025074840803034014381823166601709380037834476485770683
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 40]]
A248268
Egyptian fraction representation of sqrt(42) (A010496) using a greedy function.
Original entry on oeis.org
6, 3, 7, 220, 209746, 1800026104632, 11289682294671072755879655, 1247832270676194041105480584245717817404868332358363, 5623554373314472317858205865619051220489843727752125404940182021329874216730979924009375686764591034334
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 42]]
A248269
Egyptian fraction representation of sqrt(43) (A010497) using a greedy function.
Original entry on oeis.org
6, 2, 18, 532, 305858, 137859230710, 22012211318177566410441, 1147928569154887244380386940705198857524244457, 54505440157936785019731226309482186897275025107764309863984976644953861019275801793173245974
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 43]]
A248270
Egyptian fraction representation of sqrt(44) (A010498) using a greedy function.
Original entry on oeis.org
6, 2, 8, 122, 18919, 402739144, 764123173937021975, 2148666191962903360885805290461855276, 8622580654686644746427953833014483269744901669599325824509666827330296874
Offset: 0
-
Egyptian[nbr_] := Block[{lst = {IntegerPart[nbr]}, cons = N[ FractionalPart[ nbr], 2^20], denom, iter = 8}, While[ iter > 0, denom = Ceiling[ 1/cons]; AppendTo[ lst, denom]; cons -= 1/denom; iter--]; lst]; Egyptian[ Sqrt[ 44]]