cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-41 of 41 results.

A333554 a(0) = 9; thereafter a(n+1) = 3*a(n)^4 + 4*a(n)^3 for n >= 1.

Original entry on oeis.org

9, 22599, 782534990456559999, 1124958024440103533642098279435875957333450115658804731260154201599999999
Offset: 0

Views

Author

Bernard Schott, Mar 26 2020

Keywords

Comments

Proposition: a(n) ends with exactly 2^n 9's.
The number of digits in a(n) is respectively 1, 5, 18, 73, 289, 1156, 4622, ... At each step until a(6), the number of digits of a(n+1) is nearly 4 times the number of digits of a(n), and exactly so from a(4) to a(5).
Sequence has doubly-exponential growth: log log a(n) ~ n. - Charles R Greathouse IV, Mar 27 2020

Examples

			a(2) = 3*22599^4 + 4*22599^3 = 782534990456559999 ends with 2^2 digits 9's.
		

References

  • Eric Billault, Walter Damin, Robert Ferréol et al., MPSI - Classes Prépas, Khôlles de Maths, Ellipses, 2012, exercice 4.21 pages 79 and 91.

Crossrefs

Subsequence of A017377.

Programs

  • Mathematica
    a[0] = 9; a[n_] := a[n] = 3*a[n-1]^4 + 4*a[n-1]^3; Array[a, 4, 0] (* Amiram Eldar, Mar 26 2020 *)
Previous Showing 41-41 of 41 results.