A101895 Triangle read by rows: T(n,k) is the number of Schroeder paths of length 2n and having k peaks at even height.
2, 5, 1, 15, 6, 1, 51, 30, 8, 1, 188, 144, 51, 10, 1, 731, 685, 300, 77, 12, 1, 2950, 3258, 1695, 532, 108, 14, 1, 12235, 15533, 9348, 3455, 854, 144, 16, 1, 51822, 74280, 50729, 21538, 6245, 1280, 185, 18, 1, 223191, 356283, 272128, 130375, 43278, 10387, 1824
Offset: 1
Examples
T(3,1)=6 because we have HU(UD)D, U(UD)DH, UH(UD)D, U(UD)HD, UDU(UD)D and U(UD)DUD, the peaks at even height being shown between parentheses. Triangle begins: 2; 5,1; 15,6,1; 51,30,8,1; 188,144,51,10,1;
Programs
-
Maple
G := 1/2/(-z+z^2)*(-1+t*z+z-t*z^2+sqrt(1-2*t*z-6*z+8*t*z^2+t^2*z^2-2*t^2*z^3+5*z^2-6*t*z^3+t^2*z^4)): Gser:=simplify(series(G,z=0,14)): for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 12 do seq(coeff(t*P[n],t^k),k=1..n) od; # yields the sequence in triangular form
Formula
G.f.=G=G(t, z) satisfies z(1-z)G^2-(1-z)(1-tz)G+1-tz=0.
Comments