cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-44 of 44 results.

A211986 A list of certain compositions which arise from the ordered partitions of the positive integers in which the shells of each integer are arranged as the arms of a spiral.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 3, 5, 3, 2, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 4, 1, 6, 3, 3, 2, 4, 2, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3, 2, 1, 5, 7, 4, 3, 5, 2, 3, 2, 2, 1, 5, 1, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 2, 2, 2, 1, 2, 4, 1, 3, 3, 1, 6, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 19 2012

Keywords

Comments

In order to construct this sequence we use the following rules:
- Consider the partitions of positive integers.
- For each positive integer its shells must be arranged as the arms of a spiral.
- The sequence lists one spiral for each positive integer.
- If the integer j is odd then the first composition listed of each spiral is j.
- If the integer j is even then we use the same spiral of A211988.

Examples

			----------------------------------------------
.                 Expanded         Geometric
Compositions     arrangement         model
----------------------------------------------
1;                    1;              |*|
----------------------------------------------
2;                  2 .;            |* *|
1,1;                1,1;            |*|o|
----------------------------------------------
3;                  . . 3;          |* * *|
1,1,1;              1,1,1;          |o|o|*|
2,1;                2 .,1;          |o o|*|
----------------------------------------------
4,;               4 . . .;        |* * * *|
2,2;              2 .,2 .;        |* *|* *|
1,2,1;            1,2 .,1;        |*|o o|o|
1,1,1,1,;         1,1,1,1;        |*|o|o|o|
1,3;              1,. . 3;        |*|o o o|
----------------------------------------------
5;                . . . . 5;      |* * * * *|
3,2;              . . 3,. 2;      |* * *|* *|
1,3,1;            1,. . 3,1;      |o|o o o|*|
1,1,1,1,1;        1,1,1,1,1;      |o|o|o|o|*|
1,2,1,1;          1,2 .,1,1;      |o|o o|o|*|
2,2,1;            2 .,2 .,1;      |o o|o o|*|
4,1;              4 . . .,1;      |o o o o|*|
----------------------------------------------
6;              6 . . . . .;    |* * * * * *|
3,3;            3 . .,3 . .;    |* * *|* * *|
2,4;            2 .,4 . . .;    |* *|* * * *|
2,2,2;          2 .,2 .,2 .;    |* *|* *|* *|
1,4,1;          1,4 . . .,1;    |*|o o o o|o|
1,2,2,1;        1,2 .,2 .,1;    |*|o o|o o|o|
1,1,2,1,1;      1,1,2 .,1,1;    |*|o|o o|o|o|
1,1,1,1,1,1;    1,1,1,1,1,1;    |*|o|o|o|o|o|
1,1,3,1;        1,1,. . 3,1;    |*|o|o o o|o|
1,3,2;          1,. . 3,. 2;    |*|o o o|o o|
1,5;            1,. . . . 5;    |*|o o o o o|
------------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Mirror of A211985. Other spiral versions are A211987, A211988, A211995-A211998. See also A026792, A211983, A211984, A211989, A211992, A211993, A211994, A211999.

A211987 A list of certain compositions which arise from the ordered partitions of the positive integers in which the shells of each integer are arranged as a spiral.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 4, 2, 2, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 4, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 3, 5, 6, 3, 3, 4, 2, 2, 2, 2, 1, 4, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 2, 3, 1, 5, 1, 1, 6, 1, 3, 3, 1, 4, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Aug 18 2012

Keywords

Comments

In order to construct this sequence we use the following rules:
- Consider the partitions of positive integers.
- For each positive integer its shells must be arranged in a spiral.
- The sequence lists one spiral for each positive integer.
- If the integer j is odd then the last composition listed of each spiral is j.
- If the integer j is even then the first composition listed of each spiral is j.
This sequence represents a three-dimensional structure in which each column contains parts of the same size.

Examples

			----------------------------------------------
.                Expanded        Geometric
Compositions    arrangement        model
----------------------------------------------
1;                  1;              |*|
----------------------------------------------
2;                  . 2;            |* *|
1,1;                1,1;            |o|*|
----------------------------------------------
1,2;              1,. 2;          |*|o o|
1,1,1;            1,1,1;          |*|o|o|
3;                3 . .;          |* * *|
----------------------------------------------
4,;               . . . 4;        |* * * *|
2,2;              . 2,. 2;        |* *|* *|
1,2,1;            1,. 2,1;        |o|o o|*|
1,1,1,1,;         1,1,1,1;        |o|o|o|*|
3,1;              3 . .,1;        |o o o|*|
----------------------------------------------
1,4;            1,. . . 4;      |*|o o o o|
1,2,2;          1,. 2,. 2;      |*|o o|o o|
1,1,2,1;        1,1,. 2,1;      |*|o|o o|o|
1,1,1,1,1;      1,1,1,1,1;      |*|o|o|o|o|
1,3,1;          1,3 . .,1;      |*|o o o|o|
2,3;            2 .,3 . .;      |* *|* * *|
5;              5 . . . .;      |* * * * *|
----------------------------------------------
6;              . . . . . 6;    |* * * * * *|
3,3;            . . 3,. . 3;    |* * *|* * *|
4,2;            . . . 4,. 2;    |* * * *|* *|
2,2,2;          . 2,. 2,. 2;    |* *|* *|* *|
1,4,1;          1,. . . 4,1;    |o|o o o o|*|
1,2,2,1;        1,. 2,. 2,1;    |o|o o|o o|*|
1,1,2,1,1;      1,1,. 2,1,1;    |o|o|o o|o|*|
1,1,1,1,1,1;    1,1,1,1,1,1;    |o|o|o|o|o|*|
1,3,1,1;        1,3 . .,1,1;    |o|o o o|o|*|
2,3,1;          2 .,3 . .,1;    |o o|o o o|*|
5,1;            5 . . . .,1;    |o o o o o|*|
----------------------------------------------
Note that * is a unitary element of every part of the last section of j.
		

Crossrefs

Rows sums give A036042, n>=1.
Mirror of A211988. Other spiral versions are A211985, A211986, A211995-A211998. See also A026792, A211983, A211984, A211989, A211992, A211993, A211994, A211999.

A344084 Concatenated list of all finite nonempty sets of positive integers sorted first by maximum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 2, 3, 1, 2, 3, 4, 1, 4, 2, 4, 3, 4, 1, 2, 4, 1, 3, 4, 2, 3, 4, 1, 2, 3, 4, 5, 1, 5, 2, 5, 3, 5, 4, 5, 1, 2, 5, 1, 3, 5, 1, 4, 5, 2, 3, 5, 2, 4, 5, 3, 4, 5, 1, 2, 3, 5, 1, 2, 4, 5, 1, 3, 4, 5, 2, 3, 4, 5, 1, 2, 3, 4, 5
Offset: 1

Views

Author

Gus Wiseman, May 11 2021

Keywords

Examples

			The sets are the columns below:
  1 2 1 3 1 2 1 4 1 2 3 1 1 2 1 5 1 2 3 4 1 1 1 2 2 3 1
      2   3 3 2   4 4 4 2 3 3 2   5 5 5 5 2 3 4 3 4 4 2
              3         4 4 4 3           5 5 5 5 5 5 3
                              4                       5
As a tetrangle, the first four triangles are:
  {1}
  {2},{1,2}
  {3},{1,3},{2,3},{1,2,3}
  {4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}
		

Crossrefs

Triangle lengths are A000079.
Triangle sums are A001793.
Positions of first appearances are A005183.
Set maxima are A070939.
Set lengths are A124736.

Programs

  • Mathematica
    SortBy[Rest[Subsets[Range[5]]],Last]

A211028 A list of ordered partitions of the positive integers.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 4, 3, 1, 2, 1, 1, 1, 1, 1, 1, 3, 2, 5, 2, 2, 1, 4, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 2, 3, 3, 6, 3, 2, 1, 5, 1, 2, 2, 1, 1, 4, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 5, 2, 4, 3, 7, 2, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2012

Keywords

Comments

We start with 1. Then for each positive integer j the sequence lists the partitions of j that do not contain 1 as a part, in lexicographical order. Then the sequence lists the partitions of j-1 together with one part of size 1 as the last part of that partition. Then the partitions of j-2 together with two parts of size 1, and so on.

Examples

			Written as an irregular triangle, in which row n lists the partitions of n, the sequence begins:
  {1};
  {2},{1,1};
  {3},{2,1},{1,1,1};
  {2,2},{4},{3,1},{2,1,1},{1,1,1,1};
  {3,2},{5},{2,2,1},{4,1},{3,1,1},{2,1,1,1},{1,1,1,1,1};
  {2,2,2},{4,2},{3,3},{6},{3,2,1},{5,1},{2,2,1,1},{4,1,1},{3,1,1,1},{2,1,1,1,1},{1,1,1,1,1,1};
  ...
		

Crossrefs

Previous Showing 41-44 of 44 results.