cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A238160 A skewed version of triangular array A029653.

Original entry on oeis.org

1, 0, 2, 0, 1, 2, 0, 0, 3, 2, 0, 0, 1, 5, 2, 0, 0, 0, 4, 7, 2, 0, 0, 0, 1, 9, 9, 2, 0, 0, 0, 0, 5, 16, 11, 2, 0, 0, 0, 0, 1, 14, 25, 13, 2, 0, 0, 0, 0, 0, 6, 30, 36, 15, 2, 0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2, 0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Feb 18 2014

Keywords

Comments

Triangle T(n,k), 0<=k<=n, read by rows, given by (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (2, -1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Row sums are Fib(n+2).
Column sums are A003945(k).
Diagonal sums are (-1)^(n+1)*A109266(n+1).
T(3*n,2*n) = A029651(n).

Examples

			Triangle begins:
1;
0, 2;
0, 1, 2;
0, 0, 3, 2;
0, 0, 1, 5, 2;
0, 0, 0, 4, 7, 2;
0, 0, 0, 1, 9, 9, 2;
0, 0, 0, 0, 5, 16, 11, 2;
0, 0, 0, 0, 1, 14, 25, 13, 2;
0, 0, 0, 0, 0, 6, 30, 36, 15, 2;
0, 0, 0, 0, 0, 1, 20, 55, 49, 17, 2;
0, 0, 0, 0, 0, 0, 7, 50, 91, 64, 19, 2;
...
		

Crossrefs

Formula

G.f.: (1+x*y)/(1-x*y-x^2*y).
T(n,k) = T(n-1,k-1) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 0, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000045(n+2), A026150(n+1), A108306(n), A164545(n), A188168(n+1) for x = 0, 1, 2, 3, 4, 5 respectively.

A241188 Triangle T(n,s) of Dynkin type D_n read by rows (n >= 2, 0 <= s <= n).

Original entry on oeis.org

1, 2, 1, 1, 3, 5, 5, 1, 4, 9, 16, 20, 1, 5, 14, 30, 55, 77, 1, 6, 20, 50, 105, 196, 294, 1, 7, 27, 77, 182, 378, 714, 1122, 1, 8, 35, 112, 294, 672, 1386, 2640, 4290, 1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445
Offset: 2

Views

Author

N. J. A. Sloane, Apr 24 2014

Keywords

Examples

			Triangle begins:
1, 2, 1,
1, 3, 5, 5,
1, 4, 9, 16, 20,
1, 5, 14, 30, 55, 77,
1, 6, 20, 50, 105, 196, 294,
1, 7, 27, 77, 182, 378, 714, 1122,
1, 8, 35, 112, 294, 672, 1386, 2640, 4290,
1, 9, 44, 156, 450, 1122, 2508, 5148, 9867, 16445,
...
		

Crossrefs

See A009766 for the case of type A.
See A059481 for the case of type B/C.
Diagonals give A029869, A051960, A029651, A051924. Row sums are also A051924.

Programs

  • Mathematica
    f[t_, s_] := Binomial[t, s] (s + t)/t;
    T[, 0] = 1; T[n, n_] := f[2 n - 2, n - 2]; T[n_, s_] := f[n + s - 2, s];
    Table[T[n, s], {n, 2, 9}, {s, 0, n}] // Flatten (* Jean-François Alcover, Feb 12 2019 *)

Formula

T(n,s) = [n+s-2,s] for 0 <= s < n, T(n,n) = [2n-2,n-2], where [t,s] stands for binomial(t,s)*(s+t)/t.
Previous Showing 11-12 of 12 results.