cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 48 results. Next

A217306 Minimal natural number (in decimal representation) with n prime substrings in base-6 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 11, 17, 47, 83, 269, 263, 479, 839, 1559, 1579, 2999, 5039, 9355, 9479, 14759, 56131, 56135, 61343, 56879, 336791, 341351, 336815, 341279, 341275, 2020727, 2020895, 2047651, 2020891, 4055159, 12098587, 12125347, 12285907, 15737755, 19128523, 39190247
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=6*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 6^j = 2*(6^n - 1)/5 or m(n)=1, 2, 22, 222, 2222, 22222, …, (in base-6) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-6 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 6.

Examples

			a(1) = 2 = 2_6, since 2 is the least number with 1 prime substring in base-6 representation.
a(2) = 11 = 15_6, since 11 is the least number with 2 prime substrings in base-6 representation (5_6=5 and 15_6=11).
a(3) = 17 = 25_6, since 17 is the least number with 3 prime substrings in base-6 representation (2_6, 5_6, and 25_6).
a(4) = 47 = 115_6, since 47 is the least number with 4 prime substrings in base-6 representation (5_6, 11_6=7, 15_6=11, and 115_6=47).
a(8) = 479 = 2115_6, since 479 is the least number with 8 prime substrings in base-6 representation (2_6, 5_6, 11_6=7, 15_6=11, 21_6=13, 115_6=47, 211_6=79, and 2115_6=479).
		

Crossrefs

Formula

a(n) > 6^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= 2*(6^n - 1)/5, n>0.
a(n+1) <= 6*a(n)+2.

A217307 Minimal natural number (in decimal representation) with n prime substrings in base-7 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 2, 16, 17, 115, 121, 509, 821, 3251, 4721, 5749, 22760, 25301, 41673, 142950, 173819, 291714, 920561, 1222716, 2041709, 4450031, 8559017, 9350687, 14295199, 31150219, 50568439, 71502954, 100066398, 218051538, 353979075, 500526787, 702815371, 1512442643
Offset: 0

Views

Author

Hieronymus Fischer, Nov 22 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n prime substrings is not empty. Proof: Define m(0):=1, m(1):=2 and m(n+1):=7*m(n)+2 for n>0. This results in m(n)=2*sum_{j=0..n-1} 7^j = (7^n - 1)/3 or m(n)=1, 2, 22, 222, 2222, 22222,…, (in base-7) for n=0,1,2,3,…. Evidently, for n>0 m(n) has n 2’s and these are the only prime substrings in base-7 representation. This is why every substring of m(n) with more than one digit is a product of two integers > 1 (by definition) and can therefore not be prime number.
No term is divisible by 7.

Examples

			a(1) = 2 = 2_7, since 2 is the least number with 1 prime substring in base-7 representation.
a(2) = 16 = 22_7, since 16 is the least number with 2 prime substrings in base-7 representation (2 times 2_7=2).
a(3) = 17 = 23_7, since 17 is the least number with 3 prime substrings in base-7 representation (2_7, 3_7, and 23_7).
a(5) = 121 = 232_7, since 121 is the least number with 5 prime substrings in base-7 representation (2 times 2_7, 3_7, 23_7=17, and 32_7=23).
a(6) = 509 = 1325_7, since 509 is the least number with 6 prime substrings in base-7 representation (2_7, 3_7, 5_7, 25_7=19, 32_7=23, and 1325_7=509).
		

Crossrefs

Formula

a(n) > 7^floor(sqrt(8*n-7)-1)/2), for n>0.
a(n) <= (7^n - 1)/3, n>0.
a(n+1) <= 7*a(n) + 2.

A213308 Numbers with exactly one nonprime substring (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1, 4, 6, 8, 9, 13, 17, 22, 25, 27, 29, 31, 32, 33, 35, 43, 47, 52, 55, 57, 59, 67, 71, 72, 75, 77, 79, 83, 97, 137, 173, 223, 233, 237, 313, 317, 337, 353, 379, 523, 537, 673, 733, 737, 773, 797, 1373, 3137, 3373, 3733, 3797
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 5-digit number has at least 2 nonprime substrings. Thus, each number with more than 5 digits has >= 2 nonprime substrings, too. Consequently, there is a boundary b<10^4, such that all numbers > b have at least 2 nonprime substrings.
The first term is a(1)=1=A213302(1). The last term is a(51)=3797=A213300(1).

Examples

			a(1)=1, since 1 has one nonprime substring.
a(51)=3797, since the only nonprime substring of 3797 is 9.
		

Crossrefs

A213309 Numbers with exactly 2 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

11, 12, 15, 19, 20, 21, 24, 26, 28, 30, 34, 36, 38, 39, 41, 42, 45, 50, 51, 54, 56, 58, 61, 62, 63, 65, 70, 74, 76, 78, 82, 85, 87, 89, 92, 93, 95, 113, 131, 179, 197, 227, 229, 231, 232, 235, 239, 253, 257, 271, 273, 277, 283
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings. Thus, each number with more than 6 digits has >= 4 nonprime substrings, too. Consequently, there is a boundary b<10^5, such that all numbers > b have more than 2 nonprime substrings.
The first term is a(1)=11=A213302(2). The last term is a(130)=37337=A213300(2).

Examples

			a(1)=11, since 11 has 2 nonprime substrings.
a(130)= 37337, since there are 2 nonprime substrings (33 and 337).
		

Crossrefs

A213310 Numbers with exactly 3 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

10, 14, 16, 18, 40, 44, 46, 48, 49, 60, 64, 66, 68, 69, 80, 81, 84, 86, 88, 90, 91, 94, 96, 98, 99, 117, 123, 127, 132, 133, 135, 139, 153, 157, 167, 171, 172, 175, 177, 193, 211, 213, 217, 222, 225, 230, 234, 236, 238, 241
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings. Thus, each number with more than 6 digits has >= 4 nonprime substrings, too. Consequently, there is a boundary b<10^5, such that all numbers > b have more than 3 nonprime substrings.
The first term is a(1)=10=A213302(3). The last term is a(310)=73373=A213300(3).

Examples

			a(1)=10, since 10 has 3 nonprime substrings (0, 1, 10).
a(310)= 73373, since there are 3 nonprime substrings (33, 7337 and 73373).
		

Crossrefs

A213311 Numbers with exactly 4 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

103, 107, 111, 112, 115, 119, 122, 125, 129, 130, 134, 136, 138, 143, 147, 151, 152, 155, 159, 163, 170, 174, 176, 178, 183, 191, 192, 195, 199, 202, 203, 205, 207, 212, 215, 219, 220, 221, 224, 226, 228, 242, 245, 250
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 6-digit number has at least 4 nonprime substrings, and each 4-digit number has at least 1 nonprime substring. Thus, each 10-digit number has at least 5 nonprime substrings. Consequently, there is a boundary b, such that all numbers >= b have more than 4 nonprime substrings.
The first term is a(1)=103=A213302(4). The last term is a(653)=373379=A213300(4).

Examples

			a(1) = 103, since 103 has 4 nonprime substrings (0, 03, 1, 10).
a(653) = 373379, since there are 4 nonprime substrings (9, 33, 3379, 7337).
		

Crossrefs

A213312 Numbers with exactly 5 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

101, 102, 105, 109, 110, 114, 116, 118, 120, 121, 124, 126, 128, 141, 142, 145, 149, 150, 154, 156, 158, 161, 162, 165, 181, 182, 185, 187, 189, 190, 194, 196, 198, 200, 201, 204, 206, 208, 209, 210, 214, 216, 218, 240
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 7-digit number has at least 6 nonprime substrings. Thus, each number with more than 7 digits has >= 6 nonprime substrings, too. Consequently, there is a boundary b<10^6, such that all numbers > b have more than 5 nonprime substrings.
The first term is a(1)=101=A213302(5). The last term is a(1330)=831373=A213300(5).

Examples

			a(1)=101, since 101 has 5 nonprime substrings (0, 01, 1, 1, 10).
a(1330)= 831373, since there are 5 nonprime substrings (1, 8, 831, 8313, 31373).
		

Crossrefs

A213313 Numbers with exactly 6 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

100, 104, 106, 108, 140, 144, 146, 148, 160, 164, 166, 168, 169, 180, 184, 186, 188, 400, 404, 406, 408, 440, 444, 446, 448, 460, 464, 466, 468, 469, 480, 481, 484, 486, 488, 490, 494, 496, 498, 600, 604, 606, 608, 609
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 8-digit number has at least 10 nonprime substrings. Thus, each number with more than 8 digits has >= 10 nonprime substrings, too. Consequently, there is a boundary b<10^7, such that all numbers > b have more than 6 nonprime substrings.
The first term is a(1)=100=A213302(6). The last term is a(2351)=3733797=A213300(6).

Examples

			a(1)=100, since 100 has 6 nonprime substrings (0, 0, 00, 1, 10, 100).
a(2351)= 3733797, since there are 6 nonprime substrings (9, 33, 3379, 7337, 733797, 3733797).
		

Crossrefs

Programs

A213314 Numbers with exactly 7 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1017, 1019, 1023, 1032, 1035, 1039, 1053, 1071, 1072, 1075, 1077, 1079, 1093, 1107, 1109, 1111, 1112, 1115, 1119, 1122, 1125, 1143, 1147, 1152, 1155, 1159, 1170, 1174, 1176, 1178, 1181, 1183, 1187, 1191, 1192, 1195
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 8-digit number has at least 10 nonprime substrings. Thus, each number with more than 8 digits has >= 10 nonprime substrings, too. Consequently, there is a boundary b<10^7, such that all numbers > b have more than 7 nonprime substrings.
The first term is a(1)=1017=A213302(7). The last term is a(4362)=3733739=A213300(7).

Examples

			a(1)=1017, since 1017 has 7 nonprime substrings (0, 1, 1, 01, 10, 017, 1017).
a(4362)= 3733739 since there are 7 nonprime substrings (9, 33, 39, 7337, 73373, 373373, 733739).
		

Crossrefs

A213315 Numbers with exactly 8 nonprime substrings (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

1011, 1012, 1015, 1021, 1022, 1025, 1027, 1029, 1030, 1034, 1036, 1038, 1043, 1047, 1051, 1052, 1055, 1057, 1059, 1061, 1063, 1067, 1070, 1074, 1076, 1078, 1083, 1087, 1091, 1092, 1095, 1101, 1102, 1105, 1110, 1114
Offset: 1

Views

Author

Hieronymus Fischer, Aug 26 2012

Keywords

Comments

The sequence is finite. Proof: Each 8-digit number has at least 10 nonprime substrings. Thus, each number with more than 8 digits has >= 10 nonprime substrings, too. Consequently, there is a boundary b<10^7, such that all numbers > b have more than 8 nonprime substrings.
The first term is a(1)=1011=A213302(8). The last term is a(7483)=8313733=A213300(8).

Examples

			a(1)=1011, since 1011 has 8 nonprime substrings (0, 1, 1, 1, 01, 10, 011, 1011).
a(7483)= 8313733 since there are 8 nonprime substrings (1, 8, 33, 831, 8313, 13733, 31373, 313733).
		

Crossrefs

Previous Showing 31-40 of 48 results. Next