cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A131420 A tabular sequence of arrays counting ordered factorizations over least prime signatures. The unordered version is described by sequence A129306.

Original entry on oeis.org

1, 2, 3, 4, 8, 13, 8, 20, 44, 75, 26, 16, 48, 132, 308, 541, 76, 176, 32, 112, 368, 1076, 2612, 4683, 208, 604, 1460, 252, 818, 64, 256, 876, 3408, 10404, 25988, 47293, 544, 1888, 5740, 14300, 768, 2316, 3172, 7880, 128, 576, 2496, 10096, 36848, 116180
Offset: 1

Views

Author

Alford Arnold, Jul 10 2007

Keywords

Comments

The display has 1 2 3 5 7 11 15 ... terms per column. (cf. A000041)
The arrays begin
1.....2.....4......8......16.....32.....64......128
......3.....8.....20......48....112....256......576
...........13.....44.....132....368....976.....2496
..................75.....308...1076...3408....10096
.........................541...2612..10404....36848
...............................4683..25988...116180
.....................................47293...296564
.............................................545835
..................26......76....208....544
.........................176....604...1888
...............................1460...5740
.....................................14300
................................252....768
......................................2316
................................818...3172
......................................7880
with column sums
1....5....25....173....1297....12225....124997 => A035341
Column i corresponds to partitions of i. The rows correspond successively to the partitions {i}, {i-1,1},{i-2,1,1},{i-3,1,1,1}, ..., {i-7,1,1,1,1,1,1,1}, {i-2,2}, {i-3,2,1}, {i-4,2,1,1}, {i-5,2,1,1,1}, {i-3,3}, {i-3,3,1}, {i-4,2,2}, {i-5,2,2,1}. - Roger Lipsett, Feb 26 2016

Examples

			36 = 2*2*3*3 and is in A025487. There are 26 ways to factor 36 so a(11) = 26.
		

Crossrefs

Programs

  • Mathematica
    gozinta counts ordered factorizations of an integer, and if lst is a partition we have
    gozinta[1] = 1;
    gozinta[n_] := gozinta[n] = 1 + Sum[gozinta[n/i], {i, Rest@Most@Divisors@n}]
    a[lst_] := gozinta[Times @@ (Array[Prime, Length@lst]^lst)] (* Roger Lipsett, Feb 26 2016 *)

Extensions

Corrected entries in table in comments section - Roger Lipsett, Feb 26 2016
Previous Showing 11-11 of 11 results.