A213311
Numbers with exactly 4 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
103, 107, 111, 112, 115, 119, 122, 125, 129, 130, 134, 136, 138, 143, 147, 151, 152, 155, 159, 163, 170, 174, 176, 178, 183, 191, 192, 195, 199, 202, 203, 205, 207, 212, 215, 219, 220, 221, 224, 226, 228, 242, 245, 250
Offset: 1
a(1) = 103, since 103 has 4 nonprime substrings (0, 03, 1, 10).
a(653) = 373379, since there are 4 nonprime substrings (9, 33, 3379, 7337).
A213312
Numbers with exactly 5 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
101, 102, 105, 109, 110, 114, 116, 118, 120, 121, 124, 126, 128, 141, 142, 145, 149, 150, 154, 156, 158, 161, 162, 165, 181, 182, 185, 187, 189, 190, 194, 196, 198, 200, 201, 204, 206, 208, 209, 210, 214, 216, 218, 240
Offset: 1
a(1)=101, since 101 has 5 nonprime substrings (0, 01, 1, 1, 10).
a(1330)= 831373, since there are 5 nonprime substrings (1, 8, 831, 8313, 31373).
A213313
Numbers with exactly 6 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
100, 104, 106, 108, 140, 144, 146, 148, 160, 164, 166, 168, 169, 180, 184, 186, 188, 400, 404, 406, 408, 440, 444, 446, 448, 460, 464, 466, 468, 469, 480, 481, 484, 486, 488, 490, 494, 496, 498, 600, 604, 606, 608, 609
Offset: 1
a(1)=100, since 100 has 6 nonprime substrings (0, 0, 00, 1, 10, 100).
a(2351)= 3733797, since there are 6 nonprime substrings (9, 33, 3379, 7337, 733797, 3733797).
A213314
Numbers with exactly 7 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1017, 1019, 1023, 1032, 1035, 1039, 1053, 1071, 1072, 1075, 1077, 1079, 1093, 1107, 1109, 1111, 1112, 1115, 1119, 1122, 1125, 1143, 1147, 1152, 1155, 1159, 1170, 1174, 1176, 1178, 1181, 1183, 1187, 1191, 1192, 1195
Offset: 1
a(1)=1017, since 1017 has 7 nonprime substrings (0, 1, 1, 01, 10, 017, 1017).
a(4362)= 3733739 since there are 7 nonprime substrings (9, 33, 39, 7337, 73373, 373373, 733739).
A213315
Numbers with exactly 8 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1011, 1012, 1015, 1021, 1022, 1025, 1027, 1029, 1030, 1034, 1036, 1038, 1043, 1047, 1051, 1052, 1055, 1057, 1059, 1061, 1063, 1067, 1070, 1074, 1076, 1078, 1083, 1087, 1091, 1092, 1095, 1101, 1102, 1105, 1110, 1114
Offset: 1
a(1)=1011, since 1011 has 8 nonprime substrings (0, 1, 1, 1, 01, 10, 011, 1011).
a(7483)= 8313733 since there are 8 nonprime substrings (1, 8, 33, 831, 8313, 13733, 31373, 313733).
A213316
Numbers with exactly 9 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1002, 1003, 1005, 1007, 1009, 1010, 1014, 1016, 1018, 1020, 1024, 1026, 1028, 1041, 1042, 1045, 1049, 1050, 1054, 1056, 1058, 1062, 1065, 1069, 1082, 1085, 1089, 1090, 1094, 1096, 1098, 1099, 1100, 1104, 1106, 1108, 1140, 1144, 1146, 1148
Offset: 1
a(1) = 1002 is in the sequence, since 1002 has 9 nonprime substrings (0, 0, 1, 00, 02, 10, 002, 100, 1002).
a(12411) = 9973331 is in the sequence since there are 9 nonprime substrings (1, 9, 9, 33, 33, 99, 333, 973, 97333).
A213317
Numbers with exactly 10 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
1000, 1001, 1004, 1006, 1008, 1040, 1044, 1046, 1048, 1060, 1064, 1066, 1068, 1080, 1081, 1084, 1086, 1088, 1400, 1404, 1406, 1408, 1440, 1444, 1446, 1448, 1460, 1464, 1466, 1468, 1469, 1480, 1484, 1486, 1488, 1600
Offset: 1
a(1)=1000, since 1000 has 10 nonprime substrings (0, 0, 0, 1, 00, 00, 10, 000, 100, 1000).
a(20230)= 37337397, since there are 10 nonprime substrings (9, 33, 39, 7337, 7397, 73373, 373373, 733739, 7337397, 37337397).
A213318
Numbers with exactly 11 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
10037, 10103, 10111, 10117, 10123, 10127, 10130, 10134, 10136, 10138, 10151, 10153, 10157, 10159, 10163, 10167, 10171, 10172, 10175, 10191, 10192, 10195, 10199, 10213, 10217, 10227, 10229, 10231, 10232, 10235, 10239, 10243
Offset: 1
a(1)= 10037, since 10037 has 11 nonprime substrings (0, 0, 1, 00, 03, 10, 003, 037, 100, 0037, 1003).
a(32869)= 82337397, since there are 11 nonprime substrings (8, 9, 33, 39, 82, 2337, 7397, 23373, 82337, 233739, 82337397).
Cf.
A019546,
A035232,
A039996,
A046034,
A069489,
A085823,
A211681,
A211682,
A211684,
A211685,
A035244,
A079307,
A213300 -
A213321.
A213319
Numbers with exactly 12 nonprime substrings (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
10023, 10053, 10067, 10073, 10079, 10093, 10097, 10107, 10112, 10115, 10119, 10122, 10125, 10129, 10141, 10143, 10147, 10152, 10155, 10170, 10174, 10176, 10178, 10181, 10183, 10190, 10194, 10196, 10198, 10212, 10215, 10219
Offset: 1
a(1)=10023, since 10023 has 12 nonprime substrings (0, 0, 1, 00, 02, 10, 002, 023, 100, 0023, 1002, 10023).
a(51477)=99733313, since there are 11 nonprime substrings (1, 9, 9, 33, 33, 99, 333, 973, 33313, 97333, 733313, 99733313).
A217114
Greatest number (in decimal representation) with n nonprime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).
Original entry on oeis.org
11, 59, 239, 251, 751, 1007, 1019, 3823, 4079, 4055, 16111, 16087, 16319, 16367, 48991, 64351, 65263, 65269, 65471, 253919, 260959, 261079, 261847, 261871, 916319, 1043839, 1047391, 1044463, 1047511, 3665279, 3140991, 4189567, 4118519, 4177759, 4189565, 4193239, 14661117
Offset: 0
a(0) = 11, since 11 = 23_4 (base-4) is the greatest number with zero nonprime substrings in base-4 representation.
a(1) = 59 = 323_4 has 6 substrings in base-4 representation (2, 3, 3, 23, 32 and 323), only 32_4=14 is a nonprime substring. 59 is the greatest such number with 1 nonprime substring.
a(2) = 239 = 3233_4 has 10 substrings in base-4 representation (2, 3, 3, 23, 32, 323, 233 and 3233), exactly 2 of them are nonprime substrings (32_4=14 and 33_4=15), and there is no greater number with 2 nonprime substrings in base-4 representation.
a(11) = 16087 = 3323113_4 has 28 substrings in base-4 representation. The base-4 nonprime substrings are 1, 1, 32, 33, 231, 332, 3113, 3231, 32311, 33321 and 323113. There is no greater number with 11 nonprime substrings in base-4 representation.
Comments