cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-35 of 35 results.

A302099 Decompose the multiplicative group of integers modulo N as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, where k_i divides k_j for i < j, then a(n) is the smallest N such that the product contains a copy of C_{2n}.

Original entry on oeis.org

3, 5, 7, 32, 11, 13, 1247, 17, 19, 25, 23, 224, 4187, 29, 31, 128, 14111, 37, 43739, 41, 43, 115, 47, 119, 15251, 53, 81, 928, 59, 61, 116003, 256, 67, 70555, 71, 73, 33227, 174269, 79, 187, 83, 203, 74563, 89, 209, 235, 186497, 97, 67571, 101, 103
Offset: 1

Views

Author

Jianing Song, Apr 01 2018

Keywords

Comments

a(n) exists for all n: by Dirichlet's theorem on arithmetic progressions, there must exist two primes with the form 2a*n + 1 and 2b*n + 1 where at least one of a,b is coprime to 2n, then the multiplicative group of integers modulo (2a*n + 1)(2b*n + 1) is isomorphic to C_{2*n} x C_{2ab*n}.
Factorizations of a(n) where 2n is not a term in A002174: a(7) = 29*43, a(13) = 53*79, a(17) = 103*137, a(19) = 191*229, a(25) = 101*151, a(31) = 311*373, a(34) = 5*103*137, a(37) = 149*223, a(38) = 229*761, a(43) = 173*431, a(47) = 283*659, a(49) = 7^3*197. - Jianing Song, Apr 29 2018 [Corrected on Sep 15 2018]
It may appear that for odd n, A046072(a(n)) = 1 or 2, but this is not generally true. The smallest counterexample is a(85) = 1542013, as the multiplicative group of integers modulo 1542013 is isomorphic to C_2 x C_170 x C_4080. - Jianing Song, Sep 15 2018

Examples

			For n = 7 the multiplicative group of integers modulo 1247 is isomorphic to C_14 x C_84, and 1247 is the smallest number that contains a copy of C_14 in the product of cyclic groups, so a(7) = 1247.
For n = 34 the multiplicative group of integers modulo 70555 is isomorphic to C_2 x C_68 x C_408, and 70555 is the smallest number that contains a copy of C_68 in the product of cyclic groups, so a(34) = 70555. - _Jianing Song_, Sep 15 2018
		

Crossrefs

Programs

  • PARI
    a(n)=my(i=3, Z=[2]); while(prod(j=1, #Z, 1-(Z[j]==2*n)), i++&&Z=znstar(i)[2]); i \\ Jianing Song, Sep 15 2018

Extensions

Some terms corrected by Jianing Song, Apr 29 2018
Some terms corrected by Jianing Song, Sep 15 2018

A302109 Smallest integer N such that there are exactly n cyclic groups C_2 in the multiplicative group of integers modulo N when decomposed as a product of cyclic groups C_{k_1} x C_{k_2} x ... x C_{k_m}, and k_i divides k_j for i < j.

Original entry on oeis.org

1, 3, 8, 24, 840, 9240, 212520, 9988440, 589317960, 48913390680, 5233732802760, 874033378060920, 156451974672904680, 35514598250749362360, 8487988981929097604040, 2232341102247352669862520, 721046176025894912365593960, 51194278497838538777957171160
Offset: 0

Views

Author

Jianing Song, Apr 01 2018

Keywords

Comments

a(n) exists for all n: by Dirichlet's theorem on arithmetic progressions, there exists primes of the form 2*c_1 + 1, 2*c_2 + 1, ..., 2*c_(n+1) + 1 where c_i are pairwise coprime odd numbers, then the multiplicative group of integers modulo (2*c_1 + 1)(2*c_2 + 1)*...*(2*c_(n+1) + 1) is isomorphic to (C_2)^n x C_(2*c_1*c_2*...*c_(n+1)).
Conjecture: (a) a(j) is divisible by a(i) if i < j; (b) a(n)/4 is squarefree for all n.

Examples

			The multiplicative group of integers modulo 212520 is isomorphic to (C_2)^6 x C_660 and 212520 is the smallest number N such that the multiplicative group of integers modulo N contains six C_2 as the product of cyclic groups, so a(6) = 212520.
a(17) = 2^3 * 3 * 5 * 7 * 11 * 17 * 19 * 23 * 47 * 59 * 71 * 83 * 107 * 167 * 179 * 227 * 239 * 263, and the multiplicative group of integers modulo a(17) is isomorphic to (C_2)^17 x C_(4*3*5*7) x C_(16*9*5*7*11*17*23*29*41*53*83*113*131).
		

Crossrefs

Cf. A046072.

A318909 a(n) = Product_{1<=x<=n, n|(x^2-1)} x.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 6, 105, 8, 9, 10, 385, 12, 13, 616, 945, 16, 17, 18, 1881, 2080, 21, 22, 37182145, 24, 25, 26, 5265, 28, 6061, 30, 7905, 7360, 33, 5916, 11305, 36, 37, 13300, 1384944561, 40, 15457, 42, 20769, 21736, 45, 46, 4087504225, 48, 49, 28000, 34425
Offset: 1

Views

Author

Jianing Song, Sep 05 2018

Keywords

Comments

a(n) is the product of self-inverse elements in (Z/nZ)*, where (Z/nZ)* is the multiplicative group of integers modulo n.
For n >= 2, a(n) = n - 1 iff n is in A033948. For other n, a(n) == 1 (mod n). This can also be written as: a(n) == (-1)^A034380(n) == (-1)^(A060594(n)/2) (mod n) for n >= 3.
More generally, let P(k,n) = Product_{1<=x<=n, n|(x^k-1)} x, then P(k,n) == 1 (mod n) if k is odd or n is not in A033948, P(k,n) == -1 (mod n) otherwise. Equivalently, if A046072(n) > 1 then P(k,n) == 1 (mod n), otherwise P(k,n) == (-1)^((k+1)/2) (mod n).

Examples

			For n = 8, 1^2 == 3^2 == 5^2 == 7^2 == 1 (mod 8) so a(8) = 1*3*5*7 = 105.
For n = 12, 1^2 == 5^2 == 7^2 == 11^2 == 1 (mod 12) so a(12) = 1*5*7*11 = 385.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) convert(map(t -> rhs(op(t)),[msolve(x^2=1,n)]),`*`) end proc:
    f(1):= 1:
    map(f, [$1..100]); # Robert Israel, Nov 05 2019
  • PARI
    a(n) = prod(i=1, n, i^(Mod(i^2-1,n)==0))

A328415 Numbers k such that (Z/mZ)* = C_2 X C_(2k) has exactly one solution, where (Z/mZ)* is the multiplicative group of integers modulo m.

Original entry on oeis.org

4, 16, 27, 32, 64, 256, 512, 1024, 2048, 2187, 4096, 6561, 8192, 16384, 59049, 65536, 131072, 177147, 262144, 524288, 531441, 1048576, 1594323, 2097152, 4194304, 4782969, 8388608, 14348907, 16777216, 33554432, 67108864, 134217728, 268435456, 387420489, 536870912, 1073741824
Offset: 1

Views

Author

Jianing Song, Oct 14 2019

Keywords

Comments

Numbers k being powers of 2 or 3 such that 2*k+1 is not prime.
Proof. If m is a solution to (Z/mZ)* = C_2 X C_(2k) such that m is odd, then 2*m is also a solution, and vice versa. So if there is only one solution to (Z/mZ)* = C_2 X C_(2k), m must be a multiple of 4. If 8 divides m and m has odd prime factors, or if m has at least two distinct odd prime factors, then A046072(m) >= 3, a contradiction. So m = 2^e, e >= 3 or m = 4*p^e, p odd prime and e >= 1. If m = 4*p^e and p >= 5, then (Z/(3*p^e)Z)* = (Z/mZ)*. So we have m = 2^e, e >= 3 or m = 4*3^e, e >= 1, then (Z/mZ)* = C_2 X C_(2*2^(e-3)) or (Z/mZ)* = C_2 X C_(2*3^(e-1)).
If k = 2^(e-3) > 1 and p = 2*k+1 is prime, then (Z/(3*p)Z)* = (Z/(2^e)Z)*; if k = 3^(e-1) > 1 and p = 2*k+1 is prime, then (Z/(3*p)Z)* = (Z/(4*3^e)Z)*; on the other hand, if k is a power of 2 or a power of 3 such that 2*k+1 is not prime, then (Z/mZ)* = C_2 X C_(2k) indeed has only one solution.

Examples

			The only solution to (Z/mZ)* = C_2 X C_54 is m = 324, so 54/2 = 27 is a term.
		

Crossrefs

Cf. A328412.

Programs

  • PARI
    select(i->!isprime(2*i+1), upto(10^9)) \\ See A006899 for the function upto(n)

A368042 Moduli k for which the number of quadratic residues mod k coprime to k is phi(k)/2^r for positive r = (phi(k)/lambda(k)) - x, x > 0, where lambda is Carmichael's function. Complement of A366935.

Original entry on oeis.org

2, 24, 40, 48, 56, 60, 63, 65, 72, 80, 84, 85, 88, 91, 96, 104, 105, 112, 117, 120, 126, 130, 132, 133, 136, 140, 144, 145, 152, 156, 160, 165, 168, 170, 171, 176, 180, 182, 184, 185, 189, 192, 195, 200, 204, 205, 208, 210, 216, 217
Offset: 1

Views

Author

Miles Englezou, Dec 09 2023

Keywords

Comments

An empirical observation, verified for 2 <= k <= 10^5: The number of quadratic residues mod k coprime to k is |Q_k| = phi(k)/2^r, r = A046072(k) <= phi(k)/lambda(k). Up to 10^5, the equality holds for 37758 moduli, and the inequality holds for 62241.

Examples

			k = 2 is a term: |Q_2| = phi(2)/2^0 = 1, and r = 0 < phi(2)/lambda(2) = 1.
		

References

  • D. Shanks, Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, 1993, page 95.

Crossrefs

Programs

  • PARI
    isok(n) = my(z=znstar(n).cyc); #z < eulerphi(n)/lcm(z)
Previous Showing 31-35 of 35 results.