cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 66 results. Next

A090775 6*a(n) is the gap between sexy prime triples in the n-th sexy prime triple triple whose initial term is 5.

Original entry on oeis.org

1, 106, 246, 651, 1351, 1456, 3711, 13301, 21596, 52066, 73361, 96111, 117461, 141226, 158326, 159201, 159811, 169561, 178346, 214376, 240436, 280581, 296766, 301056, 329861, 337786, 377721, 413581, 464171, 473046, 535746, 539371, 572761
Offset: 1

Views

Author

Ray G. Opao, Feb 08 2004

Keywords

Comments

The nine terms in any sexy prime triple triple {{a, b, c}, {d, e, f}, {g, h, i}} may be arranged to form a 3 X 3 magic square [ h a f / c e g / d i b ].

Examples

			a(3)=246 identifies the third sexy prime triple triple whose initial term is 5: {{5, 11, 17}, {5+6*246, 11+6*246, 17+6*246}, {5+2*6*246, 11+2*6*246, 17+2*6*246}} which is equal to {{5, 11, 17}, {1481, 1487, 1493}, {2957, 2963, 2969}}.
		

Crossrefs

A090776 30*a(n) is the gap between sexy prime triples in the n-th sexy prime triple triple whose initial term is 7.

Original entry on oeis.org

12, 24, 55, 62, 90, 262, 1090, 1245, 1459, 2057, 3043, 3296, 7390, 11625, 13961, 26423, 27557, 29833, 48809, 55711, 68794, 70180, 72554, 78025, 84654, 108590, 112321, 117995, 147101, 160730, 176889, 180829, 184182, 203586, 204116, 217587
Offset: 1

Views

Author

Ray G. Opao, Feb 08 2004

Keywords

Comments

The nine terms in any sexy prime triple triple {{a, b, c}, {d, e, f}, {g, h, i}} may be arranged to form a 3 X 3 magic square [ h a f / c e g / d i b ].

Examples

			a(2)=24 identifies the second sexy prime triple triple whose initial term is 7: {{7, 13, 19}, {7+30*24, 13+30*24, 19+30*24}, {7+2*30*24, 13+2*30*24, 19+2*30*24}} which is equal to {{7, 13, 19}, {727, 733, 739}, {1447, 1453, 1459}}.
		

Crossrefs

A090890 30*a(n) is the gap between sexy prime triples in the n-th sexy prime triple triple whose initial term is 11.

Original entry on oeis.org

291, 564, 742, 2639, 4319, 5278, 5408, 7431, 10119, 10413, 11085, 14056, 14672, 19002, 23492, 26737, 31962, 33912, 35308, 36743, 37870, 45602, 54348, 56693, 59353, 60211, 64397, 64509, 65391, 72562, 92617, 94609, 106309, 114552, 142160
Offset: 1

Views

Author

Ray G. Opao, Feb 16 2004

Keywords

Comments

The nine terms in any sexy prime triple triple {{a, b, c}, {d, e, f}, {g, h, i}} may be arranged to form a 3 X 3 magic square [ h a f / c e g / d i b ].

Examples

			a(2)=564 identifies the second sexy prime triple triple whose initial term is 11: {{11, 17, 23}, {11+30*564, 17+30*564, 23+30*564}, {11+2*30*564, 17+2*30*564, 23+2*30*564}} which is equal to {{11, 17, 23}, {16931, 16937, 16943}, {33851, 33857, 33863}}.
		

Crossrefs

A090891 30*a(n) is the gap between sexy prime triples in the n-th sexy prime triple triple whose initial term is 17.

Original entry on oeis.org

18, 21, 49, 130, 1383, 2660, 3245, 5730, 9569, 10735, 11018, 12054, 13528, 18249, 19222, 21483, 22029, 31665, 31899, 37804, 40576, 59322, 59353, 59966, 65020, 65972, 73843, 80938, 82716, 84445, 85365, 89866, 92586, 103639, 105158, 107149
Offset: 1

Views

Author

Ray G. Opao, Feb 16 2004

Keywords

Comments

The nine terms in any sexy prime triple triple {{a, b, c}, {d, e, f}, {g, h, i}} may be arranged to form a 3 X 3 magic square [ h a f / c e g / d i b ].

Examples

			a(2)=21 identifies the second sexy prime triple triple whose initial term is 17: {{17, 23, 29}, {17+30*21, 23+30*21, 29+30*21}, {17+2*30*21, 23+2*30*21, 29+2*30*21}} which is equal to {{17, 23, 29}, {647, 653, 659}, {1277, 1283, 1289}}.
		

Crossrefs

A092445 a(n) is the first term of the sexy prime quadruple a(n), a(n)+6, a(n)+12 and a(n)+18 that becomes a perfect square if the rightmost digit (1) is removed.

Original entry on oeis.org

11, 41, 251, 641, 4001, 68891, 121001, 163841, 198811, 466561, 497291, 1115561, 2560361, 6561001, 6806251, 7516891, 11793961, 13712411, 34633211, 47436841, 52670251, 71824001, 84739211
Offset: 1

Views

Author

Ray G. Opao, Mar 24 2004

Keywords

Examples

			a(6)=68891. Removing the rightmost digit results in 6889 = 83^2.
		

Crossrefs

A095961 If p(x) is the x-th prime, then the n-th set of 2 consecutive sexy prime pairs starts at p(a(n)).

Original entry on oeis.org

9, 16, 21, 37, 54, 56, 71, 74, 84, 100, 103, 105, 108, 165, 185, 200, 208, 216, 243, 255, 271, 273, 298, 345, 347, 349, 354, 356, 372, 412, 464, 466, 494, 504, 506, 521, 554, 559, 603, 627, 630, 660, 668, 682, 684, 709, 711, 720, 762, 767, 769, 787, 789, 814
Offset: 1

Views

Author

Ray G. Opao, Jul 15 2004

Keywords

Examples

			a(2)=16. p(16)=53 and p(17)=59, the first sexy prime pair. p(18)=61 and p(19)=67, the second sexy prime pair.
		

Crossrefs

A095962 If p(x) is the x-th prime, then the n-th set of 3 consecutive sexy prime pairs starts at p(a(n)).

Original entry on oeis.org

54, 103, 271, 345, 347, 354, 464, 504, 682, 709, 767, 787, 821, 823, 825, 827, 1086, 1157, 1319, 1557, 1607, 1722, 1724, 1842, 2009, 2207, 2209, 2771, 2773, 2876, 2917, 3034, 3164, 3166, 3253, 3339, 3470, 3504, 3819, 3921, 4272, 4350, 4352, 4751, 4753
Offset: 1

Views

Author

Ray G. Opao, Jul 15 2004

Keywords

Examples

			a(2)=103. p(103)=563 and p(104)=569, the first sexy prime pair. p(105)=571 and p(106)=577, the second sexy prime pair. p(107)=587 and p(108)=593, the third sexy prime pair.
		

Crossrefs

A095963 If p(x) is the x-th prime, then the n-th set of 4 consecutive sexy prime pairs starts at p(a(n)).

Original entry on oeis.org

345, 821, 823, 825, 1722, 2207, 2771, 3164, 4350, 4751, 6201, 7616, 7686, 8141, 10138, 10140, 10827, 10829, 12217, 12219, 12915, 14128, 14130, 16386, 16746, 21417, 21594, 21724, 21726, 21777, 21788, 26561, 28594, 29519, 29662, 30573
Offset: 1

Views

Author

Ray G. Opao, Jul 15 2004

Keywords

Examples

			a(1)=345. p(345)=2333 and p(346)=2339, the first sexy prime pair. p(347)=2341 and p(348)=2347, the second sexy prime pair. p(349)=2351 and p(350)=2357, the third sexy prime pair. p(351)=2371 and p(352)=2377, the fourth sexy prime pair.
		

Crossrefs

A095964 If p(x) is the x-th prime, then the n-th set of 5 consecutive sexy prime pairs starts at p(a(n)).

Original entry on oeis.org

821, 823, 10138, 10827, 12217, 14128, 21724, 30929, 48132, 63375, 67244, 95411, 118666, 127721, 157547, 157549, 214245, 243947, 261071, 261996, 264314, 281625, 284778, 322576, 340791, 340793, 344154, 362020, 367638, 393331, 405109, 405111
Offset: 1

Views

Author

Ray G. Opao, Jul 15 2004

Keywords

Examples

			a(3)=10138. p(10138)=106357 and p(10139)=106363, the first sexy prime pair. p(10140)=106367 and p(10141)=106373, the second sexy prime pair. p(10142)=106391 and p(10143)=106397, the third sexy prime pair. p(10144)=106411 and p(10145)=106417, the fourth sexy prime pair. p(10146)=106427 and p(10147)=106433, the fifth sexy prime pair.
		

Crossrefs

A095965 If p(x) is the x-th prime, then the n-th set of 6 consecutive sexy prime pairs starts at p(a(n)).

Original entry on oeis.org

821, 157547, 340791, 405109, 405111, 409732, 419101
Offset: 1

Views

Author

Ray G. Opao, Jul 15 2004

Keywords

Comments

a(8)>500000

Examples

			a(2)=157547. p(157547)=2125451 and p(157548)=2125457, the first sexy prime pair. p(157549)=2125463 and p(157550)=2125469, the second sexy prime pair. p(157551)=2125471 and p(157552)=2125477, the third sexy prime pair. p(157553)=2125517 and p(157554)=2125523, the fourth sexy prime pair. p(157555)=2125531 and p(157556)=2125537, the fifth sexy prime pair. p(157557)=2125553 and p(157558)=2125559, the sixth sexy prime pair.
		

Crossrefs

Previous Showing 51-60 of 66 results. Next