cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A200136 Decimal expansion of the negated value of the digamma function at 2/5.

Original entry on oeis.org

2, 5, 6, 1, 3, 8, 4, 5, 4, 4, 5, 8, 5, 1, 1, 6, 1, 4, 5, 7, 3, 0, 6, 7, 5, 4, 8, 2, 0, 4, 7, 5, 2, 8, 4, 5, 5, 8, 2, 6, 3, 6, 1, 0, 9, 6, 5, 1, 0, 8, 1, 0, 1, 5, 7, 2, 3, 3, 9, 5, 3, 6, 7, 5, 2, 1, 2, 6, 1, 1, 0, 4, 2, 9, 3, 0, 5, 4, 1, 3, 8, 3, 9, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(2/5) = -2.5613845445851161457306754820475...
		

Crossrefs

Programs

  • Maple
    -gamma-Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)*log((3+sqrt(5))/2)/4 ; evalf(%) ;
  • Mathematica
    RealDigits[ PolyGamma[2/5], 10, 84] // First (* Jean-François Alcover, Feb 21 2013 *)
  • PARI
    -psi(2/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(2/5) = -gamma -Pi*sqrt(1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

A200137 Decimal expansion of the negated digamma function at 3/5.

Original entry on oeis.org

1, 5, 4, 0, 6, 1, 9, 2, 1, 3, 8, 9, 3, 1, 9, 0, 4, 1, 4, 7, 6, 0, 6, 6, 3, 9, 4, 8, 8, 0, 6, 2, 3, 1, 9, 4, 1, 5, 1, 0, 5, 3, 4, 2, 5, 4, 6, 8, 9, 6, 0, 7, 2, 0, 8, 2, 6, 6, 6, 8, 5, 2, 6, 3, 2, 6, 1, 1, 6, 8, 8, 4, 1, 2, 4, 1, 1, 0, 2, 4, 6, 6, 0, 7, 3, 3, 4, 2, 4, 6, 7, 7, 1, 9, 7, 7, 8, 8, 2, 0, 1, 0, 0, 5, 7
Offset: 1

Views

Author

R. J. Mathar, Nov 13 2011

Keywords

Examples

			Psi(3/5) = -1.540619213893190414760663948806231941510...
		

Crossrefs

Programs

  • Maple
    -gamma+Pi*sqrt(1-2/sqrt(5))/2-5*log(5)/4+sqrt(5)/4*log(3/2+sqrt(5)/2) ; evalf(%) ;
  • Mathematica
    RealDigits[-PolyGamma[3/5], 10, 105] // First (* Jean-François Alcover, Feb 11 2013 *)
  • PARI
    -psi(3/5) \\ Charles R Greathouse IV, Jul 19 2013

Formula

Psi(3/5) = -gamma +Pi*sqrt( 1-2/sqrt 5)/2 -5*log(5)/4 +sqrt(5)*log((3+sqrt 5)/2)/4.

Extensions

More terms from Jean-François Alcover, Feb 11 2013
Previous Showing 11-12 of 12 results.