cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A320882 Primes p such that repeated application of A062028 (add sum of digits) yields two other primes in a row: p, A062028(p) and A062028(A062028(p)) are all prime.

Original entry on oeis.org

11, 59, 101, 149, 167, 257, 277, 293, 367, 419, 479, 547, 617, 727, 839, 1409, 1559, 1579, 1847, 2039, 2129, 2617, 2657, 2837, 3449, 3517, 3539, 3607, 3719, 4217, 4637, 4877, 5689, 5779, 5807, 5861, 6037, 6257, 6761, 7027, 7489, 7517, 8039, 8741, 8969, 9371, 9377, 10667, 10847, 10937, 11257, 11279, 11299, 11657
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2018

Keywords

Comments

"Iterates" the idea of A048519 (p and A062028(p) are prime), also considered in A048523, A048524, A048525, A048526, A048527. (This is the union of A048524, A048525, A048526, A048527 etc. A048525(1) = 277 = a(7).)

Crossrefs

Subsequence of A048519: p and A062028(p) are prime.
Cf. A047791, A048520, A006378, A107740, A243441 (p and p + Hammingweight(p) are prime), A243442 (analog for p - Hammingweight(p)).
Cf. A048523, ..., A048527, A320878, A320879, A320880: primes starting a chain of length 2, ..., 9 under iterations of A062028(n) = n + digit sum of n.

Programs

  • Maple
    f:= n -> n + convert(convert(n,base,10),`+`):
    filter:= proc(n) local x;
    if not isprime(n) then return false fi;
    x:= f(n);
    isprime(x) and isprime(f(x))
    end proc:
    select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Dec 17 2020
  • PARI
    is_A320882(n,p=n)=isprime(p=A062028(p))&&isprime(A062028(p))&&isprime(n) \\ Putting isprime(n) to the end is more efficient for the frequent case when the terms are already known to be prime.
    forprime(p=1,14999,isprime(q=A062028(p))&&isprime(A062028(q))&&print1(p","))

A214837 Primes not expressible as the sum of a prime and its digit sum.

Original entry on oeis.org

2, 3, 5, 7, 11, 19, 23, 31, 37, 41, 43, 53, 59, 67, 71, 89, 97, 101, 109, 127, 131, 139, 149, 151, 157, 167, 179, 193, 197, 199, 211, 223, 227, 229, 233, 239, 251, 257, 263, 269, 277, 283, 311, 313, 331, 337, 347, 349, 353, 359, 367, 373, 379, 389, 401, 419
Offset: 1

Views

Author

Jayanta Basu, May 03 2013

Keywords

Comments

Primes not in A048520.

Examples

			19 is in the list since there exists no prime p such that p+digit sum of p = 19.
		

Crossrefs

Programs

  • Mathematica
    primeList = Prime[Range[81]]; Complement[primeList, Sort[Select[Table[p + Total[IntegerDigits[p]], {p, primeList}], PrimeQ]]]

A225519 Primes of the form p + sum of squares of digits of p, where p is prime.

Original entry on oeis.org

13, 23, 41, 67, 101, 103, 113, 131, 157, 181, 191, 227, 281, 379, 421, 457, 461, 467, 547, 659, 677, 677, 751, 809, 811, 829, 839, 877, 1039, 1039, 1091, 1093, 1109, 1187, 1201, 1223, 1319, 1361, 1439, 1453, 1531, 1567, 1571, 1613, 1663, 1693, 1753, 1789
Offset: 1

Views

Author

Jayanta Basu, May 09 2013

Keywords

Comments

Primes generated by A076162.

Examples

			41 is a member since 41=31+(3^2+1^2).
		

Crossrefs

Programs

  • Mathematica
    Sort[Select[Table[p=Prime[n]; p+Total[IntegerDigits[p]^2],{n,262}],PrimeQ]]
Previous Showing 11-13 of 13 results.