cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A055378 Table read by antidiagonals: T(n,k) = n^trinv(k)+n^(k-((trinv(k)*(trinv(k)-1))/2)) where trinv (k) = floor((1+sqrt(1+8*k))/2) and with 0^0 = 1.

Original entry on oeis.org

2, 1, 2, 0, 2, 2, 1, 2, 3, 2, 0, 2, 4, 4, 2, 0, 2, 5, 6, 5, 2, 1, 2, 6, 10, 8, 6, 2, 0, 2, 8, 12, 17, 10, 7, 2, 0, 2, 9, 18, 20, 26, 12, 8, 2, 0, 2, 10, 28, 32, 30, 37, 14, 9, 2, 1, 2, 12, 30, 65, 50, 42, 50, 16, 10, 2, 0, 2, 16, 36, 68, 126, 72, 56, 65, 18, 11, 2, 0, 2, 17, 54, 80, 130
Offset: 0

Views

Author

Henry Bottomley, Jun 22 2000

Keywords

Examples

			a(50) = T(5,4) = 5^2+5^1 = 30
		

Crossrefs

Rows include A010054 (apart from initial term), A007395 and A048645 (offset). Subsequent rows are sums of two powers of a given number and also rewritings of A052216 from a particular base to base 10. Columns include A007395, A000027, A005843, A002522, A002378, A001105, A001093, A034262, A011379, A033431, A002523.

Formula

T(n, k) = n^A025581(k)+n^A002262(k)

A288775 Difference between the total number of toothpicks in the toothpick structure of A139250 that are parallel to the initial toothpick after n odd stages, and the total number of "ON" cells at n-th stage in the "Ulam-Warburton" two-dimensional cellular automaton of A147562.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 4, 4, 28, 0, 0, 0, 4, 0, 4, 4, 28, 0, 4, 4, 28, 4, 28, 32, 132, 0, 0, 0, 4, 0, 4, 4, 28, 0, 4, 4, 28, 4, 28, 32, 132, 0, 4, 4, 28, 4, 28, 32, 132, 4, 28, 32, 132, 32, 136, 176, 524, 0, 0, 0, 4, 0, 4, 4, 28, 0, 4, 4, 28, 4, 28, 32, 132, 0, 4, 4, 28, 4, 28, 32, 132, 4, 28, 32
Offset: 1

Views

Author

Omar E. Pol, Jul 04 2017

Keywords

Comments

It appears that a(n) = 0 if and only if n is a member of A048645.
First differs from A255263 at a(14), with which it shares infinitely many terms.
It appears that A147562(n) = A162795(n) = A169707(n) = A255366(n) = A256250(n) = A256260(n), if n is a member of A048645.

Examples

			Written as an irregular triangle T(j,k), k>=1, in which the row lengths are the terms of A011782, the sequence begins:
0;
0;
0,0;
0,0,4,0;
0,0,4,0,4,4,28,0;
0,0,4,0,4,4,28,0,4,4,28,4,28,32,132,0;
0,0,4,0,4,4,28,0,4,4,28,4,28,32,132,0,4,4,28,4,28,32,132,4,28,32,132,32,136,176,524,0;
...
It appears that if k is a power of 2 then T(j,k) = 0.
It appears that every column lists the same terms as its initial term.
		

Crossrefs

Formula

a(n) = A162795(n) - A147562(n).

A372152 Number of k in the range 2^n <= k < 2^(n+1) whose shortest addition chain does not have length n, n+1 or n+2.

Original entry on oeis.org

0, 0, 0, 0, 2, 9, 30, 80, 193, 432, 925, 1928, 3953, 8024, 16189, 32544
Offset: 0

Views

Author

Szymon Lukaszyk, Apr 20 2024

Keywords

Comments

The length of the shortest addition chain for k is A003313(k).
Dividing natural numbers into sections 2^n <= k < 2^(n+1), some of the 2^n numbers available in a section have the shortest addition chains given by
n (for k=2^n),
n+1 (for k=2^n+2^m, m in [0..n-1], A048645), or
n+2 (for some k in A072823).
The sequence gives the numbers of k within each section (N_oth) that have the shortest addition chains other than n, n+1, and n+2.
In particular for 4 <= n <= 6, N_oth = 2^n - n^2 + 2 and for n >= 7, N_oth = 2^n - n^2 + 1.

Crossrefs

Previous Showing 31-33 of 33 results.