cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A245296 Decimal expansion of the Landau-Kolmogorov constant C(5,1) for derivatives in the case L_infinity(infinity, infinity).

Original entry on oeis.org

1, 0, 4, 4, 2, 5, 7, 9, 0, 9, 3, 0, 9, 7, 9, 5, 1, 4, 3, 4, 4, 5, 3, 6, 9, 6, 1, 7, 1, 5, 5, 7, 0, 2, 5, 8, 3, 0, 8, 0, 4, 2, 0, 8, 0, 4, 2, 0, 2, 5, 3, 7, 2, 0, 7, 7, 5, 7, 6, 1, 3, 4, 1, 5, 8, 0, 0, 2, 3, 2, 5, 8, 8, 8, 0, 0, 6, 2, 3, 5, 7, 8, 8, 7, 4, 4, 6, 0, 2, 0, 1, 1, 1, 9, 2, 2, 0, 2, 7, 8, 5, 4, 7, 2, 4
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.0442579093097951434453696171557025830804208042025372077576134158002325888...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5,1], 10, 105] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(5,1) = (5*5^(4/5))/(8*2^(4/5)*3^(1/5)) = (1953125/1572864)^(1/5).

A245297 Decimal expansion of the Landau-Kolmogorov constant C(5,2) for derivatives in the case L_infinity(infinity, infinity).

Original entry on oeis.org

1, 1, 1, 6, 6, 4, 5, 9, 7, 1, 1, 0, 3, 8, 0, 9, 8, 8, 2, 6, 4, 5, 7, 1, 5, 4, 5, 1, 0, 7, 3, 1, 5, 3, 1, 7, 8, 9, 6, 6, 5, 1, 2, 0, 0, 6, 6, 9, 7, 4, 0, 4, 0, 1, 6, 4, 5, 6, 3, 4, 2, 1, 6, 0, 6, 0, 8, 1, 7, 9, 5, 2, 8, 6, 4, 8, 5, 2, 2, 2, 9, 6, 8, 4, 6, 4, 6, 0, 0, 2, 6, 2, 2, 4, 5, 4, 9, 9, 1, 2, 3
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.1166459711038098826457154510731531789665120066974040164563421606...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5,2], 10, 101] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(5,2) = (5*5^(4/5))/(8*2^(4/5)*3^(1/5)) = (1953125/1572864)^(1/5).

A245298 Decimal expansion of the Landau-Kolmogorov constant C(5,3) for derivatives in the case L_infinity(infinity, infinity).

Original entry on oeis.org

1, 1, 1, 9, 4, 2, 3, 7, 3, 1, 7, 3, 5, 1, 0, 7, 6, 1, 1, 6, 2, 9, 7, 1, 1, 0, 8, 2, 0, 8, 1, 2, 6, 1, 0, 4, 1, 2, 4, 9, 9, 8, 5, 5, 6, 7, 0, 5, 8, 6, 0, 7, 0, 8, 6, 5, 2, 0, 9, 8, 2, 7, 9, 9, 1, 3, 1, 5, 4, 2, 2, 9, 2, 2, 9, 6, 9, 0, 4, 5, 1, 5, 2, 5, 2, 6, 2, 8, 6, 5, 9, 6, 1, 3, 0, 8, 5, 2, 2, 9, 2, 9, 5, 2
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.11942373173510761162971108208126104124998556705860708652098279913...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5,3], 10, 104] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(5,3) = (1/2)*(15/2)^(2/5).

A245299 Decimal expansion of the Landau-Kolmogorov constant C(5,4) for derivatives in the case L_infinity(-infinity, infinity).

Original entry on oeis.org

1, 4, 9, 6, 2, 7, 7, 8, 6, 9, 7, 3, 8, 8, 4, 4, 7, 3, 8, 5, 0, 8, 1, 0, 2, 1, 3, 9, 3, 2, 9, 7, 8, 2, 5, 5, 3, 3, 1, 7, 0, 0, 6, 2, 4, 7, 0, 9, 3, 2, 5, 4, 1, 0, 3, 0, 8, 7, 5, 6, 8, 6, 3, 9, 5, 0, 3, 6, 8, 0, 0, 9, 7, 2, 0, 4, 5, 0, 0, 4, 3, 3, 7, 4, 5, 7, 0, 3, 5, 8, 1, 0, 9, 0, 8, 3, 9, 6, 3, 9, 6, 9, 2, 0, 9
Offset: 1

Views

Author

Jean-François Alcover, Jul 17 2014

Keywords

Comments

See A245198.

Examples

			1.49627786973884473850810213932978255331700624709325410308756863950368...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 3.3 Landau-Kolmogorov constants, p. 213.

Crossrefs

Programs

  • Mathematica
    a[n_] := (4/Pi)*Sum[((-1)^j/(2*j+1))^(n+1), {j, 0, Infinity}]; c[n_, k_] := a[n-k]*a[n]^(-1+k/n); RealDigits[c[5,4], 10, 105] // First

Formula

C(n,k) = a(n-k)*a(n)^(-1+k/n), where a(n) = (4/Pi)*sum_{j=0..infinity}((-1)^j/(2j+1))^(n+1) or a(n) = 4*Pi^n*f(n+1), f(n) being the n-th Favard constant A050970(n)/A050971(n).
C(5,4) = (15/2)^(1/5).

A335955 a(n) = (4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n, 1)*(2^(n+1)-1))*A171977(n+1), where Z(n, c) is the Hurwitz zeta function.

Original entry on oeis.org

0, -1, -1, 1, 5, -1, -61, 17, 1385, -31, -50521, 691, 2702765, -5461, -199360981, 929569, 19391512145, -3202291, -2404879675441, 221930581, 370371188237525, -4722116521, -69348874393137901, 968383680827, 15514534163557086905, -14717667114151, -4087072509293123892361
Offset: 0

Views

Author

Peter Luschny, Jul 20 2020

Keywords

Crossrefs

Programs

  • Maple
    HZeta := (s, v) -> Zeta(0, s, v):
    a := s -> (4^s*(HZeta(-s,1/4) - HZeta(-s,3/4)) + HZeta(-s,1)*(2^(s+1)-1))* 2^padic[ordp](2*(s+1),2): seq(a(n), n = 0..28);
  • Mathematica
    a[n_] := 2^(IntegerExponent[n + 1, 2] + 1) (4^n (HurwitzZeta[-n, 1/4] - HurwitzZeta[-n, 3/4]) + HurwitzZeta[-n, 1] (2^(n + 1) - 1));
    Table[FullSimplify[a[n]], {n, 0, 26}]

Formula

A002425 interleaved with A028296.
|Numerator(a(n)/n!)| = A050970(n+1) for n >= 1.
a(n) = 2*(4^n*(Z(-n, 1/4) - Z(-n, 3/4)) + Z(-n,1)*A335954(n+1)) where Z(n, c) is the Hurwitz zeta function.
Previous Showing 11-15 of 15 results.