cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-53 of 53 results.

A274219 Numbers n such that n^k is the average of a positive square and a positive cube for all k > 0.

Original entry on oeis.org

1, 64, 729, 1000, 1728, 4096, 13456, 15625, 27000, 46656, 59319, 64000, 110592, 117649, 148877, 262144, 531441, 729000, 777924, 861184, 1000000, 1259712, 1537600, 1728000
Offset: 1

Views

Author

Altug Alkan, Jun 14 2016

Keywords

Comments

Terms of this sequence are 1, 2^6, 3^6, 10^3, 12^3, 2^12, 116^2, 5^6, 30^3, ...

Examples

			13456 = 116^2 is a term because 13456 = (163^2 + 7^3) / 2, 13456^2 = (1088^2 + 712^3) / 2, 13456^3 = ((116^3)^2 + (116^2)^3) / 2, 13456^4 = (254426048^2 + 94192^3) / 2, 13456^5 = (1698254848^2 + 9580672^3) / 2, 13456^6 = ((116^6)^2 + (116^4)^3) / 2.
		

Crossrefs

Cf. A055394.

Programs

Extensions

a(13)-a(18) from Giovanni Resta, Jun 14 2016

A274247 Numbers n such that n^k is the sum of a positive square and a positive cube for all k not divisible by 6.

Original entry on oeis.org

12348, 16464, 433664, 444528, 617400, 790272, 1053696, 2534400, 2737152, 6585600, 6667920, 7024032
Offset: 1

Views

Author

Altug Alkan, Jun 16 2016

Keywords

Comments

It is sufficient to prove that the decomposition exists for k=1..5, because if n^k = a^2+b^3, then n^(k+6) = (n^3*a)^2 + (n^2*b)^3.

Examples

			12348 is a term since 12348 = 98^2 + 14^3, 12348^2 = 9604^2 + 392^3, 12348^3 = 1361367^2 + 3087^3, 12348^4 = 76236552^2 + 259308^3, 12348^5 = 11206773144^2 + 5445468^3.
		

Crossrefs

Cf. A055394.

Programs

Extensions

a(6)-a(12) from Giovanni Resta, Jun 18 2016

A303377 Numbers of the form a^7 + b^8, with integers a, b > 0.

Original entry on oeis.org

2, 129, 257, 384, 2188, 2443, 6562, 6689, 8748, 16385, 16640, 22945, 65537, 65664, 67723, 78126, 78381, 81920, 84686, 143661, 279937, 280192, 286497, 345472, 390626, 390753, 392812, 407009, 468750, 670561, 823544, 823799, 830104, 889079, 1214168, 1679617, 1679744, 1681803
Offset: 1

Views

Author

M. F. Hasler, May 04 2018

Keywords

Comments

Although it is easy to produce many terms of this sequence, it is nontrivial to check efficiently whether a very large number is of this form.

Examples

			The sequence starts with 1^7 + 1^8, 2^7 + 1^8, 1^7 + 2^8, 2^7 + 2^8, 3^7 + 1^8, 3^7 + 2^8, 1^7 + 3^8, 2^7 + 3^8, 3^7 + 3^8, 4^7 + 1^8, 4^7 + 2^8, 4^7 + 3^8, 1, ...
		

Crossrefs

Cf. A000404 (a^2 + b^2), A055394 (a^2 + b^3), A111925 (a^2 + b^4), A100291 (a^4 + b^3), A100292 (a^5 + b^2), A100293 (a^5 + b^3), A100294 (a^5 + b^4).
Cf. A303372 (a^2 + b^6), A303373 (a^3 + b^6), A303374 (a^4 + b^6), A303375 (a^5 + b^6), A303376 (a^6 + b^7).

Programs

  • Mathematica
    With[{nn=40}, Take[Union[First[#]^7 + Last[#]^8&/@Tuples[Range[nn], 2]], nn]]
  • PARI
    is(n,k=7,m=8)=for(b=1,sqrtnint(n-1,m),ispower(n-b^m,n)&&return(b)) \\ Returns b > 0 if n is in the sequence, else 0.
    A303377_vec(L=10^7,k=7,m=8,S=List())={for(a=1,sqrtnint(L-1,m),for(b=1,sqrtnint(L-a^m,k), listput(S,a^m+b^k)));Set(S)} \\ all terms up to limit L
Previous Showing 51-53 of 53 results.