cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A372116 a(n) = Product_{k=0..n} (n+k)!^k.

Original entry on oeis.org

1, 2, 3456, 128994508800000, 21048441369734473363614597120000000000, 13080442484467245346116306952031286205761554346416540536012800000000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2024

Keywords

Comments

The next term has 146 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[(n + k)!^k, {k, 0, n}], {n, 0, 8}]

Formula

a(n) ~ 2^(2*n^3/3 + 5*n^2/4 + 2*n/3 + 1/24) * Pi^(n*(n+1)/4) * n^(5*n^3/6 + 5*n^2/4 + 5*n/12) / exp(31*n^3/36 + 7*n^2/8 - 1/24).
For n>=1, a(n) = a(n-1) * A368132(n) * (2*n-1)!^n.

A372140 a(n) = Product_{k=1..n} BarnesG(k)^k.

Original entry on oeis.org

1, 1, 1, 1, 16, 3981312, 2271857773302207479808, 133781874275586180035265927852035878702421114880000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2024

Keywords

Comments

The next term has 113 digits.

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[k]^k, {k, 1, n}], {n, 0, 8}]

Formula

a(n) ~ (2*Pi)^(n*(n^2 - 1)/6) * n^(n^4/8 - n^3/12 - n^2/6 + n/24 + 19/720) / (A^(n^2/2 + n/2 - 1/3) * exp(7*n^4/32 - 5*n^3/72 - 7*n^2/24 - n/24 - zeta(3)/(8*Pi^2) + zeta'(-3)/6 + 23/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.

A365266 a(n) = Product_{k=1..n} Gamma(6*k).

Original entry on oeis.org

1, 120, 4790016000, 1703748471578689536000000, 44045334006101976766560297729172439040000000000, 389438360216723307909581902233109465138002465491175688781168640000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[Gamma[6*k], {k, 1, n}], {n, 0, 10}]
    Table[Product[(6*k-1)!, {k, 1, n}], {n, 0, 10}]

Formula

a(n) = A^(35/6) * exp(-35/72) * Gamma(1/3)^(5/3) * 2^(-125/72 + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * Pi^(-25/12 - 5*n/2) * BarnesG(1 + n) * BarnesG(7/6 + n) * BarnesG(4/3 + n) * BarnesG(3/2 + n) * BarnesG(5/3 + n) * BarnesG(11/6 + n), where A = A074962 is the Glaisher-Kinkelin constant.
a(n) ~ A^(-1/6) * Gamma(1/3)^(5/3) * 2^(-35/72 + 3*n + 3*n^2) * 3^(47/72 + 5*n/2 + 3*n^2) * exp(1/72 - 5*n/2 - 9*n^2/2) * n^(19/72 + 5*n/2 + 3*n^2) * Pi^(-5/6 + n/2), where A = A074962 is the Glaisher-Kinkelin constant.

A371339 a(n) = Product_{k=1..n} A000178(k)^k.

Original entry on oeis.org

1, 1, 4, 6912, 47552535724032, 2344457420244640062508151026483200000, 556518660278190472985800630083758030134707790620313895060688076800000000000000000
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 20 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Product[BarnesG[k+2]^k, {k, 1, n}], {n, 0, 8}]

Formula

a(n) = Product_{k=1..n} BarnesG(k+2)^k.
a(n) = A372140(n+2) / A055462(n)^2.
a(n) ~ (2*Pi)^(n*(n+1)*(n+2)/6) * n^(n^4/8 + 7*n^3/12 + 5*n^2/6 + 3*n/8 + 19/720) / (A^(n^2/2 + n/2 - 1/3) * exp(7*n^4/32 + 59*n^3/72 + 17*n^2/24 - n/24 + zeta(3)/(8*Pi^2) + zeta'(-3)/6 - 37/720)), where A is the Glaisher-Kinkelin constant A074962, zeta(3) = A002117, zeta'(-3) = A259068.
Previous Showing 21-24 of 24 results.