cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A057404 Low-temperature specific heat expansion for Kagome net (Potts model, q=4).

Original entry on oeis.org

144, 0, 864, 1764, 3168, 18468, 25200, 117612, 301104, 736164, 3083472, 7009200, 26587584, 75949200, 220443768, 728295840, 1994796720, 6533132760, 19485485712, 59845160592, 189326190240, 566841960000
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057376 Low-temperature specific heat expansion for square lattice (Potts model, q=3).

Original entry on oeis.org

32, 0, 144, 196, 256, 1944, 1600, 7260, 24864, 21632, 164640, 265500, 657408, 2659956, 3730320, 16136700, 36340960, 84457380, 289921808, 592348808, 1815681792, 4836460000, 11458859776, 35005107420, 84260881600
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2000

Keywords

Crossrefs

A057377 Low-temperature partition function expansion for square lattice (Potts model, q=3).

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 4, 4, 6, 24, 24, 68, 190, 192, 904, 1420, 3106, 9940, 14572, 49268, 102886, 225004, 652940, 1301256, 3513806, 8591792, 19326248, 52781148, 120709472, 306339824, 779682608, 1852672272, 4847112666, 11876028924
Offset: 0

Views

Author

N. J. A. Sloane, Aug 29 2000

Keywords

Crossrefs

A057379 Low-temperature susceptibility expansion for square lattice (Potts model, q=4).

Original entry on oeis.org

3, 0, 24, 48, 120, 648, 1608, 4176, 21093, 38064, 175608, 494616, 1365726, 5077200, 13549704, 43359768, 140590629, 389348688, 1296882504, 3834279072, 11499126642, 36680416368, 107193301920, 333178056720
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057380 Low-temperature specific heat expansion for square lattice (Potts model, q=4).

Original entry on oeis.org

48, 0, 216, 588, -96, 5832, 4800, 13068, 115776, 32448, 664440, 1736100, 1757760, 18387336, 24467184, 90326532, 379958640, 535402224, 2924464488, 7189478184, 17099776512, 73614120000, 153395478288, 528792612984
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057381 Low-temperature partition function expansion for square lattice (Potts model, q=4).

Original entry on oeis.org

1, 0, 0, 0, 3, 0, 6, 12, 3, 72, 66, 144, 822, 480, 3624, 8508, 10482, 65856, 94794, 289452, 1008420, 1561032, 6503532, 15224016, 34976979, 125988144, 263308986, 805096764, 2319752694, 5402283396, 17415097542, 44310604860
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Crossrefs

A057384 Low-temperature specific heat expansion for hexagonal lattice (Potts model, q=3).

Original entry on oeis.org

72, 0, 0, 0, 600, 726, -1440, 0, 7056, 8100, -13824, -20808, 94176, 119130, -196800, -291942, 917664, 1986924, -2389248, -5092500, 10788960, 26041338, -21643104, -81270876, 111771360, 369058596, -215519232, -1109316384
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057385 Low-temperature partition function expansion for hexagonal lattice (Potts model, q=3).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 6, 6, -8, 0, 36, 36, -42, -60, 272, 330, -402, -554, 1758, 3564, -3320, -7056, 14616, 33426, -21498, -83640, 111856, 354612, -158802, -884208, 758088, 3744582, -734260, -9805608, 4839270, 38734736, 2364180
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057386 Low-temperature magnetization expansion for hexagonal lattice (Potts model, q=4).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, -4, 0, 0, 0, -24, -48, 60, 0, -300, -480, 144, 1392, -4392, -7248, 2904, 13280, -27348, -142512, 29948, 241872, -336072, -1711936, -950268, 4759680, -2790212, -25599600, -17648472, 53777216, 24551472, -385317888
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

A057388 Low-temperature specific heat expansion for hexagonal lattice (Potts model, q=4).

Original entry on oeis.org

108, 0, 0, 0, 900, 2178, -3672, 0, 14112, 27000, -18432, -114444, 290628, 467856, -354600, -1479114, 1768536, 12073896, -5861808, -29193750, 22900176, 165214728, 64153152, -654007014, 163350540, 2795893038
Offset: 0

Views

Author

N. J. A. Sloane, Aug 30 2000

Keywords

Comments

The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.

Crossrefs

Previous Showing 11-20 of 31 results. Next