cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A153226 Numbers k such that the string k modulo 1000 is found at position k in the decimal digits of Pi.

Original entry on oeis.org

1, 1005, 1053, 1255, 2006, 2025, 2246, 2560, 3712, 4063, 4066, 4087, 5006, 5009, 5038, 5068, 5076, 5538, 6000, 6025, 6045, 7007, 7025, 7037, 8068, 8960, 9009, 9052, 10007, 10823, 11003, 11005, 12000, 12003, 12134, 12639, 14009, 14207, 14326, 14944, 15052, 16000
Offset: 1

Views

Author

Gil Broussard, Dec 21 2008

Keywords

Examples

			a(4) = 1255 because 255 occurs at offset 1255 after the decimal in the digits of Pi.
		

Crossrefs

Programs

  • Python
    from sympy import S
    # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
    #with open('pi-billion.txt', 'r') as f: pi_digits = f.readline()
    pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above
    pi_digits = pi_digits.replace(".", "")
    def ispal(s): return s == s[::-1]
    def agen():
        for k in range(len(pi_digits)):
            sk = str(k%1000)
            if sk == pi_digits[k:k+len(sk)]:
                yield k
    g = agen()
    print([next(g) for n in range(1, 43)]) # Michael S. Branicky, Jan 30 2022

Extensions

a(40) and beyond from Michael S. Branicky, Jan 30 2022

A153227 Numbers k such that the string k is found at position 2k in the decimal digits of Pi.

Original entry on oeis.org

5, 95, 171, 529, 1913, 2753, 60597, 831092, 9552919
Offset: 1

Views

Author

Gil Broussard, Dec 21 2008

Keywords

Examples

			a(2) = 95 because 95 occurs at offset 190 (2*95) after the decimal in the digits of Pi.
		

Crossrefs

Programs

  • Python
    from sympy import S
    # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
    #with open('pi-billion.txt', 'r') as f: pi_digits = f.readline()
    pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above
    pi_digits = pi_digits.replace(".", "")
    def afind():
        for k in range(1, len(pi_digits)):
            sk = str(k)
            if sk == pi_digits[2*k:2*k+len(sk)]:
                print(k, end=", ")
    afind() # Michael S. Branicky, Jan 30 2022

Extensions

a(8) corrected by Paul Tek, Jun 09 2013
a(9) from Michael S. Branicky, Jan 30 2022

A153228 Numbers k such that the string k is found at position 3k in the decimal digits of Pi.

Original entry on oeis.org

1, 2, 3, 85, 200, 447263
Offset: 1

Views

Author

Gil Broussard, Dec 21 2008

Keywords

Examples

			a(4) = 85 because 85 occurs at offset 255 (3*85) after the decimal in the digits of Pi.
		

Crossrefs

Programs

  • Python
    from sympy import S
    # download https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt, then
    #with open('pi-billion.txt', 'r') as f: pi_digits = f.readline()
    pi_digits = str(S.Pi.n(3*10**5+2))[:-2] # alternative to above
    pi_digits = pi_digits.replace(".", "")
    def afind():
        for k in range(1, len(pi_digits)):
            sk = str(k)
            if sk == pi_digits[3*k:3*k+len(sk)]:
                print(k, end=", ")
    afind() # Michael S. Branicky, Jan 30 2022

Extensions

a(6) corrected by Michael S. Branicky, Jan 30 2022

A366830 Self-locating strings within Pi: numbers n such that the reverse string n starts at position n in the decimal digits of Pi, where 3 is the first digit.

Original entry on oeis.org

5, 1610, 5833, 82699856, 9633661255, 17292288245, 78246420246
Offset: 1

Views

Author

J. Volkmar Schmidt, Oct 31 2023

Keywords

Examples

			1610 is a term because '0161' starts at position 1610:
Position  1  2  3  4  ...  1610  1611  1612  1613  ...
Pi        3  1  4  1  ...    0     1     6     1   ...
		

Crossrefs

A366831 Self-locating strings within Pi: numbers n such that the reverse string n starts at position n in the decimal digits of Pi, where leading 3 is omitted.

Original entry on oeis.org

1, 50, 576, 242424, 746074, 10311073, 54848721, 103849853, 48438192357
Offset: 1

Views

Author

J. Volkmar Schmidt, Oct 31 2023

Keywords

Examples

			50 is a term because '05' starts at position 50,
576 is a term because '675' starts at position 576:
Position        1 2 3 ... 50 51 ... 576 577 578 ...
Pi (3 omitted)  1 4 1 ... 0  5  ... 6   7   5   ...
		

Crossrefs

A153230 Numbers k such that the string k is found at position k^2 in the decimal digits of Pi.

Original entry on oeis.org

1, 3, 22, 596, 43934, 78778, 249994
Offset: 1

Views

Author

Gil Broussard, Dec 21 2008

Keywords

Comments

a(5) > 10^4, if it exists. - Amiram Eldar, May 06 2024
From Michael S. Branicky, May 19 2025: (Start)
a(8) > 10^6.
Assuming uniformly random digits, the expected value is 0.9 terms per digit-length. (End)

Examples

			22 is in the sequence because 22 occurs at position 484 (22^2) after the decimal point in the digits of Pi.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 10^3}, s = Rest@ RealDigits[Pi, 10, m^2][[1]]; q[n_] := s[[n^2 + Range[0, IntegerLength[n] - 1]]] == RealDigits[n][[1]]; Select[Range[m - 1], q]] (* Amiram Eldar, May 06 2024 *)

Extensions

a(5)-a(7) from Michael S. Branicky, May 18 2025

A331015 Self-locating strings within Euler-Mascheroni Constant (gamma), strings k at position k (taking gamma offset 1).

Original entry on oeis.org

57, 16939, 767158, 5505709, 6674196, 7418985, 18873720
Offset: 1

Views

Author

S. Alwin Mao, Feb 12 2020

Keywords

Comments

The first self-locating digits of gamma are 57, and the first digits of gamma are 57.
A near-miss '04305165' begins at position 4305165.

Examples

			57 is a term because the 57th digit is 5 and the 58th digit is 7.
		

Crossrefs

Euler-Mascheroni constant digits: A001620.
Self-locating digits of Pi: A057679, A064810 and e: A205648.

Programs

  • Mathematica
    dgamma = RealDigits[EulerGamma, 10, 1000010][[1]]; Select[Range[1000000], FromDigits[Take[dgamma, {#, # - 1 + IntegerLength[#]}]] == # &] (* Vaclav Kotesovec, Feb 18 2020 *)

A332492 Self-locating numbers within the decimal expansion of log(2): strings k beginning at position k (first digit after decimal point is position 2).

Original entry on oeis.org

7, 23, 52, 54, 86, 303, 389, 5112, 60392, 87491, 94788, 97115, 616916, 672938066
Offset: 1

Views

Author

S. Alwin Mao, Feb 14 2020

Keywords

Comments

a(15) > 10^9.
52 and 54 are self-locating numbers which appear consecutively in log(2) = 0.693...5254....

Examples

			For 0.693147..., if 6 appears at position 2, then 7 appears at position 7.
		

Crossrefs

Decimal expansion of log(2): A002162.
Self-locating digits of Pi: A057679, A153220.

Programs

  • Mathematica
    dlog2 = RealDigits[Log[2], 10, 1000010][[1]]; Select[Range[2, 1000000], FromDigits[Take[dlog2, {# - 1, # - 2 + IntegerLength[#]}]] == # &] (* Vaclav Kotesovec, Feb 18 2020 *)
Previous Showing 11-18 of 18 results.