A383188 Irregular table, read by rows, where row z = 2, 3, 4, ... lists pairs (y, x) such that x + y/z = concat(y, x)/z with 0 < y < z, gcd(y, z) = 1, and primitive x, cf. comments.
1, 9, 2, 9, 1, 3, 3, 9, 4, 9, 5, 9, 2, 3, 4, 6, 6, 9, 1, 142857, 3, 428571, 5, 714285, 7, 9, 8, 9, 3, 3, 7, 7, 9, 9, 10, 9, 5, 45, 7, 63, 11, 9, 4, 3, 8, 6, 12, 9, 3, 230769, 5, 384615, 7, 538461, 11, 846153, 13, 9, 2, 142857, 4, 285714, 8, 571428, 14, 9, 5, 3, 15, 9, 16, 9, 5, 2941176470588235, 7, 4117647058823529, 11, 6470588235294117, 13, 7647058823529411, 17, 9, 2, 1, 4, 2, 6, 3, 8, 4, 10, 5, 12, 6, 14, 7, 16, 8, 18, 9
Offset: 2
Keywords
Examples
For any z > 1, we have the solution (x, y) = (9, z-1), and well as non-primitive x = 99, 999, ... (not listed in the table), for example: z = 2, y = 1: 9 + 1/2 = 19/2, and 99 + 1/2 = 199/2, 999 + 1/2 = 1999/2, ... z = 3, y = 2: 9 + 2/3 = 29/3, and 99 + 2/3 = 299/3, 999 + 2/3 = 2999/3, ... z = 4, y = 3: 9 + 3/4 = 39/4, and 99 + 3/4 = 399/4, 999 + 3/4 = 3999/4, ... But in row z = 4 we first list the solution y = 1, x = 3, viz: 3 + 1/4 = 13/4 (and 3...3 + 1/4 = 13...3 / 4). In row z = 7 we first list the solution y = 2, x = 3, viz: 3...3 + 2/7 = 23...3 / 7, then y = 4, x = 6, viz: 6...6 + 4/7 = 46...6 / 7. In row 8, we have the solutions 142857...142857 + 1/8 = 1142857...142857 / 8, 428571...428571 + 3/8 = 3428571...428571 / 8, 714285...714285 + 5/8 = 5714285...714285 / 8, 9...9 + 7/8 = 79...9 / 8. The table starts: z | pairs (y, x) (= sequence data) ------+-------------------------------- 2 | 1, 9 3 | 2, 9 4 | 1, 3; 3, 9 (representing 3...3 + 1/4, and 9...9 + 3/4) 5 | 4, 9 6 | 5, 9 7 | 2, 3; 4, 6; 6, 9 8 | 1, 142857; 3, 428571; 5, 714285; 7, 9 9 | 8, 9 10 | 3, 3; 7, 7; 9, 9 (representing 3...3 + 3/10 = 33...3 / 10, etc.) 11 | 10, 9 (representing 9...9 + 10/11 = 109...9 / 11) 12 | 5, 45; 7, 63; 11, 9 (e.g., 63...63 + 7/12 = 763...63 / 12, etc.) 13 | 4, 3; 8, 6; 12, 9 14 | 3, 230769; 5, 384615; 7, 538461; 11, 846153; 13, 9 15 | 2, 142857; 4, 285714; 8, 571428; 14, 9 16 | 5, 3; 15, 9 17 | 16, 9 18 | 5, 2941176470588235; 7, 4117647058823529; 11, 6470588235294117; | 13, 7647058823529411; 17, 9 19 | 2, 1; 4, 2; 6, 3; 8, 4; 10, 5; 12, 6; 14, 7; 16, 8; 18, 9
Links
- Romy Aran, Harry Potter numbers, post to the SeqFan google group, May 1, 2025.
Programs
-
PARI
/* brute-force search, for illustration */ row(z, L=99, S=[]) = { for ( y = max(1, (z-1)\10+1), z-1, gcd(y, z) > 1 && next; my ( zz = Mod(10,z-1) ); for ( Lx = 1, L, y*(zz^Lx-1) && next; my ( x = y*(10^Lx-1)/(z-1) ); logint(x, 10)+1 == Lx || next; foreach ( S, xx, x%xx[2] && next; x\xx[2] == 10^Lx\(10^(logint(xx[2], 10)+1)-1) && next(2)); S = concat(S,[[y, x]]) )/*for Lx*/ )/*for y*/; concat(S) }
Comments