A358631 Irregular table T(n, k), n >= 0, k > 0, read by rows of extended (due to binary expansion of n) Stirling numbers of the first kind.
1, 1, 2, 3, 1, 4, 5, 1, 6, 11, 6, 1, 6, 7, 1, 12, 20, 9, 1, 18, 26, 9, 1, 24, 50, 35, 10, 1, 8, 9, 1, 18, 29, 12, 1, 30, 41, 12, 1, 48, 94, 59, 14, 1, 36, 47, 12, 1, 72, 130, 71, 14, 1, 96, 154, 71, 14, 1, 120, 274, 225, 85, 15, 1, 10, 11, 1, 24, 38, 15, 1, 42
Offset: 0
Examples
Irregular table begins: 1, 1; 2, 3, 1; 4, 5, 1; 6, 11, 6, 1; 6, 7, 1; 12, 20, 9, 1; 18, 26, 9, 1; 24, 50, 35, 10, 1; 8, 9, 1; 18, 29, 12, 1; 30, 41, 12, 1; 48, 94, 59, 14, 1; 36, 47, 12, 1; 72, 130, 71, 14, 1; 96, 154, 71, 14, 1; 120, 274, 225, 85, 15, 1;
Crossrefs
Programs
-
PARI
b1(n)=if(n>0, my(A=n - 2^logint(n, 2)); if(A>0, logint(A, 2) + 1)) b2(n)=if(n>0, my(A=b1(3*2^logint(n, 2) - n - 1)); n + if(A>0, 2^(A-1))) P(n,k)=if(n==0 || k==1, (n==0 && k<3) + (k==1 && n>0), my(L=logint(n, 2), A=n - 2^L); (hammingweight(A) + 2)*P(A, k-1)*(L - b1(n) + 1) + P(b2(A), k)) T(n, k)=my(A=hammingweight(n)); if(k<=(A + 2), P(n, A - k + 3))
Formula
T(n, k) = P(n, wt(n) - k + 3) for n >= 0, 0 < k <= wt(n) + 2 where wt(n) = A000120(n).
P(n, 1) = 1 for n > 0 with P(0, 1) = P(0, 2) = 1.
P(n, k) = (A000120(q(n)) + 2)*P(q(n), k-1)*(A290255(n) + 1) + P(s(q(n)), k) for n > 0, k > 1 where q(n) = A053645(n) and where s(n) = n + [A063250(n) > 0]*2^(A063250(n) - 1).
T(2^n - 1, k) = abs(Stirling1(n+2, k)) for n >= 0, k > 0.
Conjectures: (Start)
Sum_{k=1..A000120(n) + 2} T(n, k)*(-1)^k = 0 for n >= 0.
Extensions
Offset corrected by Mikhail Kurkov, Nov 07 2024
Comments