cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A302186 Number of 3D walks of type ace.

Original entry on oeis.org

1, 3, 11, 44, 188, 842, 3911, 18692, 91412, 455540, 2306028, 11829424, 61375408, 321583108, 1699500055, 9049714852, 48513809796, 261638920412, 1418673379052, 7730011715760, 42305916178288, 232475082183544, 1282208011668988, 7096065370945168, 39394821683770960, 219341739839760912
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Cf. A000108, A000984, A002212, A002896, A005572, A026375, A064037, A081671, A138547, A145847, A145867 (number of 3D walks of type acd), A150500, A202814.

Programs

  • Python
    from math import comb as binomial
    def C(n): return (binomial(2*n, n)//(n+1)) # Catalan numbers
    def row(n: int) -> list[int]:
         return sum(binomial(n, k)*sum(binomial(k, j)*C((j+1)//2)*C(j//2)*(2*(j//2)+1) for j in range(k+1)) for k in range(n+1))
    for n in range(26): print(row(n)) # Mélika Tebni, Nov 29 2024

Formula

Binomial transform of A145847. - Mélika Tebni, Nov 29 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 29 2024

A302187 Number of 3D walks of type bcc.

Original entry on oeis.org

1, 2, 8, 30, 138, 620, 3060, 14910, 76650, 390852, 2063376, 10832052, 58264668, 312123240, 1702423008, 9256786110, 51036229530, 280696824980, 1560925457520, 8663089672380, 48512836025940, 271229902496280, 1527733861191720, 8593482390429300, 48642125421855420, 275014629509319000
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def a(n):
        return sum(binomial(n, k)*binomial(k, k//2)*binomial(n-k, (n-k)//2)**2 for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 25 2024

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*A001405(k)*A018224(n-k). - Mélika Tebni, Nov 25 2024

Extensions

a(12)-a(25) from Nachum Dershowitz, Aug 03 2020

A302188 Number of 3D walks of type bce.

Original entry on oeis.org

1, 3, 12, 53, 252, 1252, 6416, 33609, 178996, 965660, 5263728, 28936404, 160204336, 892313424, 4995832640, 28096475977, 158638993476, 898844200524, 5108695394096, 29117034808980, 166370716319088, 952789631705104, 5467881256289856, 31438798094242244, 181079794531199440, 1044651995141484912
Offset: 0

Views

Author

N. J. A. Sloane, Apr 09 2018

Keywords

Comments

See Dershowitz (2017) for precise definition.
Binomial transform of A150500 (Number of 3D walks of type bcd). - Mélika Tebni, Nov 28 2024

Crossrefs

Programs

  • Python
    from math import comb as binomial
    def a(n):
        return sum(binomial(n, k)*sum(binomial(k, j)*binomial(j, j//2)**2 for j in range(k+1)) for k in range(n+1))
    print([a(n) for n in range(26)]) # Mélika Tebni, Nov 28 2024

Extensions

a(12)-a(25) from Mélika Tebni, Nov 28 2024
Previous Showing 11-13 of 13 results.