A348631
Nonexponential weird numbers: nonexponential abundant numbers (A348604) that are not equal to the sum of any subset of their nonexponential divisors.
Original entry on oeis.org
70, 4030, 5830, 10430, 10570, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290
Offset: 1
70 is a term since the sum of its nonexponential divisors, {1, 2, 5, 7, 10, 14, 35}, is 74 > 70, and no subset of these divisors sums to 70.
-
dQ[n_, m_] := (n > 0 && m > 0 && Divisible[n, m]); expDivQ[n_, d_] := Module[{ft = FactorInteger[n]}, And @@ MapThread[dQ, {ft[[;; , 2]], IntegerExponent[d, ft[[;; , 1]]]}]]; neDivs[1] = {}; neDivs[n_] := Module[{d = Divisors[n]}, Select[d, ! expDivQ[n, #] &]]; nesigma[n_] := Total@neDivs[n]; neAbundantQ[n_] := nesigma[n] > n; neWeirdQ[n_] := neAbundantQ[n] && Module[{d = neDivs[n]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[6000], neWeirdQ]
A328563
Nonsquarefree unitary weird numbers that are also weird numbers.
Original entry on oeis.org
1554070, 1596070, 1725430, 1859830, 1952230, 2095030, 2242870, 2293270, 2553670, 2607430, 2716630, 2772070, 3116470, 3481030, 3607030, 3670870, 3800230, 3998470, 4065670, 4410070, 4623430, 4841830, 5065270, 5140870, 5371030, 5527270, 5606230, 6009430, 6597430
Offset: 1
-
weirdQ[n_, d_, s1_, m1_] := weirdQ[n, d, s1, m1] = Module[{s = s1, m = m1}, If[m == 0, False, While[d[[m]] > n, s -= d[[m]]; m--]; d[[m]] < n && If[s > n, weirdQ[n - d[[m]], d, s - d[[m]], m - 1] && weirdQ[n, d, s - d[[m]], m - 1], s < n && m < Length[d] - 1]]];
aQ[n_] := ! SquareFreeQ[n] && Module[{d = Divisors[n]}, s = Total@d - n; m = Length[d] - 1; Total@Select[d, GCD[#, n/#] == 1 &] > 2 n && weirdQ[n, d, s, m]]; Select[Range[10^7], aQ]
(* after M. F. Hasler's pari code at A006037 *)
A339939
Coreful weird numbers: numbers k that are coreful abundant (A308053) but no subset of their aliquot coreful divisors sums to k.
Original entry on oeis.org
4900, 14700, 53900, 63700, 83300, 93100, 112700, 142100, 151900, 161700, 181300, 191100, 200900, 210700, 230300, 249900, 259700, 279300, 289100, 298900, 328300, 338100, 347900, 349448, 357700, 387100, 406700, 426300, 436100, 455700, 475300, 494900, 504700, 524300
Offset: 1
4900 is a term since the sum of its aliquot coreful divisors, {70, 140, 350, 490, 700, 980, 2450}, is 5180 > 4900, and no subset of these divisors sums to 4900.
-
corDiv[n_] := Module[{rad = Times @@ FactorInteger [n][[;;,1]]}, rad * Divisors[n/rad]]; corWeirdQ[n_] := Module[{d = Most@corDiv[n], x}, Plus @@ d > n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[10^5], corWeirdQ]
A349285
(1+e)-weird numbers: (1+e)-abundant numbers k such that no subset of the aliquot (1+e)-divisors of k sums to k.
Original entry on oeis.org
70, 836, 4030, 5830, 10430, 10570, 10990, 11410, 11690, 12110, 12530, 12670, 13370, 13510, 13790, 13930, 14770, 15610, 15890, 16030, 16310, 16730, 16870, 17570, 17990, 18410, 18830, 18970, 19390, 19670, 19810, 20510, 21490, 21770, 21910, 22190, 23170, 23590, 24290
Offset: 1
-
divQ[n_, m_] := (n > 0 && (m == 0 || Divisible[n, m])); oeDivQ[n_, d_] := Module[{f = FactorInteger[n]}, And @@ MapThread[divQ, {f[[;; , 2]], IntegerExponent[d, f[[;; , 1]]]}]]; oeDivs[1] = {1}; oeDivs[n_] := Module[{d = Divisors[n]}, Select[d, oeDivQ[n, #] &]]; oesigma[1] = 1; oesigma[n_] := Total@oeDivs[n]; oeAbundantQ[n_] := oesigma[n] > 2*n; oeWeirdQ[n_] := oeAbundantQ[n] && Module[{d = Most[oeDivs[n]]}, SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[12000], oeWeirdQ]
A381071
Numbers k such that the sum of the proper divisors of k that have the same binary weight as k is larger than k, and no subset of these divisors sums to k.
Original entry on oeis.org
1050, 3150, 4284, 4410, 5148, 6292, 6790, 7176, 8890, 10764, 17850, 18648, 19000, 19530, 32886, 33072, 33150, 35088, 35530, 35720, 35770, 38850, 41360, 43164, 45084, 49368, 49764, 50456, 50730, 52884, 54280, 54340, 58410, 58696, 59010, 59408, 63492, 66010, 68376
Offset: 1
Similar sequences:
A006037,
A064114,
A292986,
A306984,
A321146,
A327948,
A339939,
A348525,
A348631,
A349285,
A364862.
-
divs[n_] := Module[{hw = DigitCount[n, 2, 1]}, Select[Divisors[n], DigitCount[#, 2, 1] == hw &]];
weirdQ[n_, d_, s1_, m1_] := weirdQ[n, d, s1, m1] = Module[{s = s1, m = m1}, If[m == 0, False, While[m > 0 && d[[m]] > n, s -= d[[m]]; m--]; If[m == 0, True, d[[m]] < n && If[s > n, weirdQ[n - d[[m]], d, s - d[[m]], m - 1] && weirdQ[n, d, s - d[[m]], m - 1], s < n && m < Length[d] - 1]]]];
q[n_] := Module[{d = divs[n], s, m}, s = Total[d] - n; m = Length[d] - 1; weirdQ[n, d, s, m]]; Select[Range[70000], q] (* based on a Pari code by M. F. Hasler at A006037 *)
-
divs(n) = {my(h = hammingweight(n)); select(x -> hammingweight(x)==h, divisors(n));}
is(n, d = divs(n), s = vecsum(d)-n, m = #d-1) = {if(m == 0, return(0)); while(m > 0 && d[m] > n, s -= d[m]; m--); if(m==0, return(1)); (d[m] < n &&
if(s > n, is(n-d[m], d, s-d[m], m-1) && is(n, d, s-d[m], m-1), s < n && m < #d-1));} \\ based on a code by M. F. Hasler at A006037
A342399
Unitary pseudoperfect numbers k such that no subset of the nontrivial unitary divisors {d|k : 1 < d < k, gcd(d, k/d) = 1} adds up to k.
Original entry on oeis.org
3510, 3770, 5670, 5810, 6790, 7630, 7910, 9590, 9730, 544310, 740870, 2070970, 4017310, 4095190, 5368510, 5569690, 5762330, 5838770, 5855290, 5856130, 5887630, 5902470, 5985770, 6006070, 6039530, 6075370, 6083630, 6181210, 6259610, 6471290, 7038710, 7065730, 7285390
Offset: 1
3510 is a term since it is a unitary pseudoperfect number, 3510 = 1 + 2 + 5 + 13 + 27 + 54 + 65 + 130 + 135 + 270 + 351 + 702 + 1755, and the set of nontrivial unitary divisors of 3510, {d|3510 : 1 < d < 3510, gcd(d, 3510/d) = 1} = {2, 5, 10, 13, 26, 27, 54, 65, 130, 135, 270, 351, 702, 1755}, has no subset that adds up to 3510.
-
q[n_] := Module[{d = Most @ Select[Divisors[n], CoprimeQ[#, n/#] &], x}, Plus @@ d > n && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n] > 0 && SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, 2, Length[d]}], {x, 0, n}], n] == 0]; Select[Range[10^4], q]
Comments