cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A157491 A050165*A130595 as infinite lower triangular matrices.

Original entry on oeis.org

1, 0, 1, 0, -1, 2, 0, 2, -6, 5, 0, -5, 20, -28, 14, 0, 14, -70, 135, -120, 42, 0, -42, 252, -616, 770, -495, 132, 0, 132, -924, 2730, -4368, 4004, -2002, 429, 0, -429, 3432, -11880, 23100, -27300, 19656, -8008, 1430
Offset: 0

Views

Author

Philippe Deléham, Mar 01 2009

Keywords

Comments

Triangle, read by rows, given by [0,-1,-1,-1,-1,-1,-1,...] DELTA [1,1,1,1,1,1,1,1,...] where DELTA is the operator defined in A084938. Triangle related to k-regular trees.

Examples

			Triangle begins:
  1;
  0,  1;
  0, -1,  2;
  0,  2, -6,   5;
  0, -5, 20, -28, 14;
  ...
		

Crossrefs

Formula

Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000012(n), A000984(n), A089022(n), A035610(n), A130976(n), A130977(n), A130978(n), A130979(n), A130980(n), A131521(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A064093, A064092, A064091, A064090, A064089, A064088, A064087, A064063, A064062, A000108, A000012, A064310, A064311, A064325, A064326, A064327, A064328, A064329, A064330, A064331, A064332, A064333 for x = -9,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12 respectively. [Philippe Deléham, Mar 03 2009]

A189675 Composition of Catalan and Fibonacci numbers.

Original entry on oeis.org

1, -1, 2, 2, -4, 3, -5, 10, -9, 5, 14, -28, 27, -20, 8, -42, 84, -84, 70, -40, 13, 132, -264, 270, -240, 160, -78, 21, -429, 858, -891, 825, -600, 351, -147, 34, 1430, -2860, 3003, -2860, 2200, -1430, 735, -272, 55, -4862, 9724, -10296, 10010, -8008, 5577, -3234, 1496, -495, 89, 16796, -33592, 35802, -35360, 29120, -21294, 13377, -7072, 2970, -890, 144, -58786, 117572, -125970, 125970, -106080, 80444, -53508, 30940, -15015, 5785, -1584, 233
Offset: 1

Views

Author

Wouter Meeussen, Apr 25 2011

Keywords

Comments

Row sums equal 1 (proof by Bill Gosper, Apr 17 2011). Row sums of absolute terms equal A081696.

Examples

			Table starts
   1,
  -1,  2,
   2, -4,  3,
  -5, 10, -9, 5,
		

References

  • Email of R. W. Gosper on the math-fun mailing list, Apr 17 2011.

Crossrefs

Programs

  • Mathematica
    Table[(-1)^(k + n) k/(2n - k) Binomial[2n - k, n - k] Fibonacci[k + 1], {n, 12}, {k, n}]
Previous Showing 11-12 of 12 results.