A291175 Numbers k such that lambda(k) = lambda(k-1) + lambda(k-2), where lambda(k) is Carmichael lambda function (A002322).
3, 5, 7, 11, 13, 22, 46, 371, 717, 1379, 1436, 1437, 3532, 5146, 12209, 35652, 45236, 58096, 93932, 130170, 263589, 327095, 402056, 680068, 808303, 814453, 870689, 991942, 1178628, 1670065, 1686526, 2041276, 2319102, 2324004, 3869372, 4290742, 4449280
Offset: 1
Keywords
Examples
lambda(717) = 238 = 178 + 60 = lambda(716) + lambda(715), therefore 717 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
Select[Range[10^6], CarmichaelLambda[#]==CarmichaelLambda[#-1]+CarmichaelLambda[#-2]&] Flatten[Position[Partition[CarmichaelLambda[Range[45*10^5]],3,1],?(#[[1]]+#[[2]] == #[[3]]&),1,Heads->False]]+2 (* _Harvey P. Dale, Sep 02 2024 *)
-
Python
from sympy import reduced_totient A291175_list, a, b, c, n = [], 1, 1, 2, 3 while n < 10**6: if c == a + b: A291175_list.append(n) print(len(A291175_list),n) n += 1 a, b, c = b, c, reduced_totient(n) # Chai Wah Wu, Aug 31 2017
Comments