cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A291175 Numbers k such that lambda(k) = lambda(k-1) + lambda(k-2), where lambda(k) is Carmichael lambda function (A002322).

Original entry on oeis.org

3, 5, 7, 11, 13, 22, 46, 371, 717, 1379, 1436, 1437, 3532, 5146, 12209, 35652, 45236, 58096, 93932, 130170, 263589, 327095, 402056, 680068, 808303, 814453, 870689, 991942, 1178628, 1670065, 1686526, 2041276, 2319102, 2324004, 3869372, 4290742, 4449280
Offset: 1

Views

Author

Amiram Eldar, Aug 19 2017

Keywords

Examples

			lambda(717) = 238 = 178 + 60 = lambda(716) + lambda(715), therefore 717 is in the sequence.
		

Crossrefs

Programs

A332971 Infinitary phibonacci numbers: solutions k of the equation iphi(k) = iphi(k-1) + iphi(k-2) where iphi(k) is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

3, 4, 7, 23, 121, 2857, 5699, 6377, 9179, 46537, 63209, 244967, 654497, 1067873, 1112009, 3435929, 3831257, 6441593, 7589737, 7784507, 8149751, 14307856, 22434089, 24007727, 24571871, 44503417, 44926463, 56732729, 128199059, 140830367, 190145936, 401767631, 403152737
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			7 is a term since iphi(7) = 6 and iphi(5) + iphi(6) = 4 + 2 = 6.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1])); iphi[1] = 1; iphi[n_] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) - 1); Select[Range[3, 10^5], iphi[#] == iphi[# - 1] + iphi[# - 2] &]

A332972 Solutions k of the equation cototient(k) = cototient(k-1) + cototient(k-2) where cototient(k) is A051953.

Original entry on oeis.org

3, 4, 105, 165, 195, 2205, 2835, 38805, 131145, 407925, 936495, 1025505, 1231425, 1276905, 1788255, 1925565, 2521695, 2792145, 2847585, 3289935, 5003745, 5295885, 5710089, 6315309, 6986889, 13496385, 17168085, 19210065, 20171385, 22348365, 26879685, 27798705
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			3 is a term since cototient(3) = 1 and cototient(1) + cototient(2) = 0 + 1 = 1.
105 is a term since cototient(105) = 57 and cototient(103) + cototient(104) = 1 + 56 = 57.
		

Crossrefs

Programs

  • Mathematica
    cotot[n_] := n - EulerPhi[n]; Select[Range[3, 10^6], cotot[#] == cotot[# - 1] + cotot[# - 2] &]

A332974 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = usigma(k) - k is the sum of proper unitary divisors of k (A063919).

Original entry on oeis.org

3, 21, 321, 1257, 3237, 146139, 268713, 584835, 26749089, 9988999095, 25997557299, 54449485353, 935628578283, 2105722150095, 3921293253003, 8234992646643
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Comments

a(17) > 10^13. - Giovanni Resta, May 09 2020

Examples

			21 is a term since s(21) = 11 and s(19) + s(20) = 1 + 10 = 11.
		

Crossrefs

Programs

  • Mathematica
    usigma[1] = 1; usigma[n_] := Times @@ (1 + Power @@@ FactorInteger[n]); s[n_] := usigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

Extensions

a(12)-a(16) from Giovanni Resta, May 09 2020

A332976 Solutions k of the equation s(k) = s(k-1) + s(k-2) where s(k) = isigma(k) - k is the sum of proper infinitary divisors of k (A126168).

Original entry on oeis.org

3, 8, 10, 21, 3237, 7377, 146139, 584835, 9988999095, 25997557299
Offset: 1

Views

Author

Amiram Eldar, Mar 04 2020

Keywords

Examples

			8 is a term since s(8) = 7 and s(6) + s(7) = 6 + 1 = 7.
		

Crossrefs

Programs

  • Mathematica
    fun[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; isigma[1] = 1; isigma[n_] := Times @@ fun @@@ FactorInteger[n]; s[n_] := isigma[n] - n; Select[Range[3, 6*10^5], s[#] == s[# - 1] + s[# - 2] &]

A226753 Numbers n such that sigma(n) + sigma(n+1) + sigma(n+2) = sigma(n+3) + sigma(n+4) + sigma(n+5).

Original entry on oeis.org

52, 56, 2199, 17312, 92444, 31768040, 41159079, 52236776, 79563436, 683321810, 689969123, 757808252, 881421986, 910016369, 22184779055
Offset: 1

Views

Author

Alex Ratushnyak, Jun 16 2013

Keywords

Comments

The sequence of corresponding sums begins: 272, 290, 10820, 86514, 473568, 162349956, 203060920, 258797664, 398693936, 3418531584, 3544794576, 3812186016, 4066082208, 4374966816.

Examples

			Sigma(52) + sigma(53) + sigma(54) = 98 + 54 + 120 = 272.
Sigma(55) + sigma(56) + sigma(57) = 72 + 120 + 80 = 272.
So 52 is in the sequence.
		

Crossrefs

Extensions

a(15) from Giovanni Resta, Jun 17 2013
Previous Showing 11-16 of 16 results.