cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A110092 Smallest prime ending (through <*2+1> or <*2-1> separately) a complete Cunningham chain (of the first or the second kind) of length n.

Original entry on oeis.org

17, 59, 73, 4079, 47, 2879, 1065601
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

The word "complete" indicates each chain is exactly n primes long for the operator in function (i.e. the chain cannot be a subchain of another one); and the first and/or last term may not be involved in a chain of the other kind (i.e. the chain may not be connected to another one).

Examples

			a(1)=17 because 2, 3, 5, 7, 11 and 13 are part of longer chains whatever the operator; 17 is the first completely isolated prime.
a(2)=59 because it ends the first two primes chain not connected to another one: 29->59.
		

Crossrefs

Extensions

Terms computed by Gilles Sadowski.

A110093 Smallest prime ending (through <*2+1> or/and <*2-1>) a complete Cunningham chain (of the first or the second kind) of length n.

Original entry on oeis.org

11, 7, 5, 4079, 47, 2879, 1065601
Offset: 1

Views

Author

Alexandre Wajnberg, Sep 04 2005

Keywords

Comments

The word "complete" indicates each chain is exactly n primes long for the operator in function (i.e. the chain cannot be a subchain of another one); but the first and/or last term may be involved in a chain of the other kind (i.e. the chain may be connected to another one).

Examples

			a(1)=11 because 2, 3, 5 and 7 are not ending chains; or are part of chains longer than one prime; 11, although is part of a five primes <2p+1> chain, is isolated through <2p-1>.
a(2)=7 because 7 ends through <2p+1> the first two primes chain: 3->7 (even if both primes are also part of <2p-1> chains).
		

Crossrefs

Extensions

Terms computed by Gilles Sadowski.
Previous Showing 11-12 of 12 results.