cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-43 of 43 results.

A138276 Total number of active nodes of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 3 (with a single 1 as initial condition).

Original entry on oeis.org

1, 4, 6, 18, 30, 90, 102, 306, 510, 1530, 1542, 4626, 7110
Offset: 0

Views

Author

Jens Christian Claussen (claussen(AT)theo-physik.uni-kiel.de), Mar 11 2008

Keywords

Comments

See A138277 for the corresponding sequence for a Bethe lattice with coordination number 4.
See A001045 for the corresponding sequence on a 1D lattice (equivalent to a k=2 Bethe lattice); this is based on the Jacobsthal sequence A001045.
See A072272 for the corresponding sequence on a 2D lattice (based on A007483).
Related to Cellular Automata.

Examples

			Let x_0 be the state (0 or 1) of the focal node and x_i the state of every node that is i steps away from the focal node. In time step n=0, all x_i=0 except x_0=1 (start with a single seed). In the next step, x_1=1 as they have 1 neighbor being 1. For n=2, the x_1 nodes have 1 neighbor being 1 (x_0) and
themselves being 1; the sum being 2, modulo 2, resulting in x_1=0. The focal node itself is 1 and has 3 neighbors being 1, sum being 4, modulo 2, resulting in x_0=0. The outmost nodes x_n are always 1.
Thus one has the patterns
x_0, x_1, x_2, ...
1
1 1
0 0 1
0 0 1 1
0 0 1 0 1
0 0 1 1 1 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1 1
0 0 1 0 1 0 1 0 1
0 0 1 1 1 1 1 1 1 1
0 0 1 0 0 0 0 0 0 0 1
After 2 time steps, the x_0 and x_1 stay frozen at zero and the remaining x_i are generated by Rule 60 (or Rule 90 on half lattice spacing).
These nodes have multiplicities 1,3,6,12,24,48,96,192,384,768,...
The sequence then is obtained by
a(n) = x_0(n) + 3 * Sum_{i=1..n} x_i(n) * 2^(i-1)
		

Crossrefs

Formula

The total number of nodes in state 1 after n iterations (starting with a single 1) of the Rule 150 cellular automaton on an infinite Bethe lattice with coordination number 3. Rule 150 sums the values of the focal node and its k neighbors, then applies modulo 2.

A246011 a(n) = Product_{i in row n of A245562} Lucas(i+1), where Lucas = A000204.

Original entry on oeis.org

1, 3, 3, 4, 3, 9, 4, 7, 3, 9, 9, 12, 4, 12, 7, 11, 3, 9, 9, 12, 9, 27, 12, 21, 4, 12, 12, 16, 7, 21, 11, 18, 3, 9, 9, 12, 9, 27, 12, 21, 9, 27, 27, 36, 12, 36, 21, 33, 4, 12, 12, 16, 12, 36, 16, 28, 7, 21, 21, 28, 11, 33, 18, 29, 3, 9, 9, 12, 9, 27, 12, 21, 9, 27, 27, 36, 12, 36, 21, 33, 9, 27, 27, 36, 27
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2014; revised Sep 05 2014

Keywords

Comments

This is the Run Length Transform of S(n) = Lucas(n+1) = 1,3,4,7,11,... (cf. A000204).
The Run Length Transform of a sequence {S(n), n>=0} is defined to be the sequence {T(n), n>=0} given by T(n) = Product_i S(i), where i runs through the lengths of runs of 1's in the binary expansion of n. E.g. 19 is 10011 in binary, which has two runs of 1's, of lengths 1 and 2. So T(19) = S(1)*S(2). T(0)=1 (the empty product).

Examples

			From _Omar E. Pol_, Feb 15 2015: (Start)
Written as an irregular triangle in which row lengths are the terms of A011782:
1;
3;
3,4;
3,9,4,7;
3,9,9,12,4,12,7,11;
3,9,9,12,9,27,12,21,4,12,12,16,7,21,11,18;
3,9,9,12,9,27,12,21,9,27,27,36,12,36,21,33,4,12,12,16,12,36,16,28,7,21,21,28,11,33,18,29;
...
Right border gives the Lucas numbers (beginning with 1). This is simply a restatement of the theorem that this sequence is the Run Length Transform of A000204.
(End)
		

Crossrefs

Programs

  • Maple
    A000204 := proc(n) option remember; if n <=2 then 2*n-1; else A000204(n-1)+A000204(n-2); fi; end;
    ans:=[];
    for n from 0 to 100 do lis:=[]; t1:=convert(n,base,2); L1:=nops(t1);
    out1:=1; c:=0;
    for i from 1 to L1 do
       if out1 = 1 and t1[i] = 1 then out1:=0; c:=c+1;
       elif out1 = 0 and t1[i] = 1 then c:=c+1;
       elif out1 = 1 and t1[i] = 0 then c:=c;
       elif out1 = 0 and t1[i] = 0 then lis:=[c,op(lis)]; out1:=1; c:=0;
       fi;
       if i = L1 and c>0 then lis:=[c,op(lis)]; fi;
                       od:
    a:=mul(A000204(i+1), i in lis);
    ans:=[op(ans),a];
    od:
    ans;
  • Python
    from math import prod
    from re import split
    from sympy import lucas
    def run_length_transform(f): return lambda n: prod(f(len(d)) for d in split('0+', bin(n)[2:]) if d != '') if n > 0 else 1
    def A246011(n): return run_length_transform(lambda n:lucas(n+1))(n) # Chai Wah Wu, Oct 24 2024

A247650 Number of terms in expansion of f^n mod 2, where f = (1/x^2+1/x+1+x+x^2)*(1/y^2+1/y+1+y+y^2) mod 2.

Original entry on oeis.org

1, 25, 25, 49, 25, 289, 49, 361, 25, 625, 289, 361, 49, 961, 361, 625, 25, 625, 625, 1225, 289, 3721, 361, 5041, 49, 1225, 961, 1681, 361, 5041, 625, 5929, 25, 625, 625, 1225, 625, 7225, 1225, 9025, 289, 7225, 3721, 5041, 361, 8281, 5041, 5929, 49, 1225
Offset: 0

Views

Author

N. J. A. Sloane, Sep 25 2014

Keywords

Comments

This is the number of cells that are ON after n generations in a two-dimensional cellular automaton defined by the odd-neighbor rule where the neighborhood consists of a 5X5 block of contiguous cells.

Crossrefs

Programs

  • Python
    import sympy
    from operator import mul
    from functools import reduce
    x, y = sympy.symbols('x y')
    f = ((1/x**2+1/x+1+x+x**2)*(1/y**2+1/y+1+y+y**2)).expand(modulus=2)
    A247650_list, g = [1], 1
    for n in range(1, 101):
        s = [int(d, 2) for d in bin(n)[2:].split('00') if d != '']
        g = (g*f).expand(modulus=2)
        if len(s) == 1:
            A247650_list.append(g.subs([(x, 1), (y, 1)]))
        else:
            A247650_list.append(reduce(mul, (A247650_list[d] for d in s)))
    # Chai Wah Wu, Sep 25 2014

Formula

The values of a(n) for n in A247647 (or A247648) determine all the values, as follows. Parse the binary expansion of n into terms from A247647 separated by at least two zeros: m_1 0...0 m_2 0...0 m_3 ... m_r 0...0. Ignore any number (one or more) of trailing zeros. Then a(n) = a(m_1)*a(m_2)*...*a(m_r). For example, n = 37_10 = 100101_2 is parsed into 1.00.101, and so a(37) = a(1)*a(5) = 25*289 = 7225. This is a generalization of the Run Length Transform.
Previous Showing 41-43 of 43 results.