cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A375568 a(n) = denominator(A006571(n)/A366450(n)) if A366450(n) != 0, otherwise 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 9, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 14, 5, 1, 2, 1, 9, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 4, 27, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 14, 3, 5, 1, 1, 1, 1
Offset: 1

Views

Author

Mats Granvik, Aug 19 2024

Keywords

Comments

a(n) differs from A071974 at n = 27, 32, 36, 49, 54, 72, 76, 81, 96, 98, 100, 108, 116, 125, 135, 144,...
a(n) differs from A056622 at n = 27, 32, 36, 49, 54, 72, 76, 81, 96, 98, 100, 108, 116, 125, 128, 135, 144,...
GCD(a(n), A071974(n)) differs from A071974 at n = 36, 72, 76, 100, 116, 144,...
GCD(a(n), A056622(n)) differs from A056622 at n = 36, 72, 76, 100, 116, 128, 144,...

Crossrefs

Programs

  • Mathematica
    nn = 104; a[n_] := DivisorSum[n, MoebiusMu[#]   # &]; f = (x^3 - x^2 - y^2 - y); w[n_] := SeriesCoefficient[q*(Product[(1 - q^k), {k, 11, n, 11}]*Product[1 - q^k, {k, n}])^2, {q, 0, n}]; A006571 = ParallelTable[w[n], {n, 1, nn}]; A366450 = ParallelTable[Sum[Sum[Sum[If[GCD[f, n] == k, 1, 0]*a[k]/n, {x, 1, n}], {y, 1, n}], {k, 1, n}], {n, 1, nn}]; Denominator[A006571/A366450]
Previous Showing 11-11 of 11 results.